Problems of Information Transmission

, Volume 51, Issue 3, pp 267–288 | Cite as

Algorithmic aspects of decomposition and equivalence of finite-valued transducers

  • An. A. Muchnik
  • K. Yu. Gorbunova
Large Systems


We study algorithmic issues of the problems of decomposing a finite-valued transducer into a union of single-valued ones and inclusion of an arbitrary transducer in a finite-valued one. We propose algorithms that partially improve efficiency estimates for known analogous algorithms.


Information Transmission Marked State Algorithmic Aspect Current Pair Testing Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weber, A. Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern, Dissertation, Goethe-Universität Frankfurt am Main, Germany, 1987.Google Scholar
  2. 2.
    Weber, A. A Decomposition Theorem for Finite Valued Transducers and an Application to the Equivalence Problem, Proc. 13th Int. Sympos. on Mathematical Foundations of Computer Science (MFCS’88), Carlsbad, Czechoslovakia, Aug. 29–Sept. 2, 1988. Chytil, M. Janiga, L., and Koubek, V., Eds., Lect. Notes Comput. Sci., vol. 324, Berlin: Springer, 1988, pp. 552–562.Google Scholar
  3. 3.
    Weber, A. On the Valuedness of Finite Transducers, Acta Inform., 1990, vol. 27, no. 8, pp. 749–780.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Weber, A. Decomposing a k-Valued Transducer into k Unambiguous Ones, RAIRO Inform. Théor. Appl., 1996, vol. 30, no. 5, pp. 379–413.zbMATHMathSciNetGoogle Scholar
  5. 5.
    Sakarovitch, J. and de Souza, R. On the Decomposition of k-Valued Rational Relations, Proc. 25th Int. Sympos. on Theoretical Aspects of Computer Science (STACS’2008), Bordeaux, France, Feb. 21–23, 2008. Albers, S. and Weil, P. Eds., Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2008, pp. 621–632.Google Scholar
  6. 6.
    Sakarovitch, J. and de Souza, R. Lexicographic Decomposition of k-Valued Transducers, Theory Comput. Syst., 2010, vol. 47, no. 3, pp. 758–785.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Sakarovitch, J. and de Souza, R. On the Decidability of Bounded Valuedness for Transducers, Proc. 33rd Int. Sympos. on Mathematical Foundations of Computer Science (MFCS’2008), Torun, Poland, Aug. 25–29, 2008. Ochmanski, E. and Tyszkiewicz, J. Eds., Lect. Notes Comput. Sci., vol. 5162, Berlin: Springer, 2008, pp. 588–600.CrossRefGoogle Scholar
  8. 8.
    de Souza, R. On the Decidability of the Equivalence for k-Valued Transducers, Proc. 12th Int. Conf. on Developments in Language Theory (DLT’2008), Kyoto, Japan, Sept. 16–19, 2008. Ito, M. and Toyama, M. Eds., Lect. Notes Comput. Sci., vol. 5257, Berlin: Springer, 2008, pp. 252–263.Google Scholar
  9. 9.
    Sakarovitch, J. Elements of Automata Theory, Cambridge: Cambridge Univ. Press, 2009.CrossRefGoogle Scholar
  10. 10.
    Culik, K. II and Karhumäki, J., The Equivalence of Finite Valued Transducers (on HDT0L Languages) is Decidable, Theoret. Comput. Sci., 1986, vol. 47, no. 1, pp. 71–84.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Hopcroft, J.E. Motwani, R., and Ullman, J.D., Introduction to Automata Theory, Languages, and Computation, Boston: Addison-Wesley, 2001. 2nd ed. Translated under the title Vvedenie v teoriyu avtomatov, yazykov i vychislenii, Moscow: Williams, 2002.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2015

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia

Personalised recommendations