Problems of Information Transmission

, Volume 50, Issue 2, pp 117–132 | Cite as

Strong converse for the classical capacity of the pure-loss bosonic channel

Information Theory

Abstract

This paper strengthens the interpretation and understanding of the classical capacity of the pure-loss bosonic channel, first established in [1]. In particular, we first prove that there exists a trade-off between communication rate and error probability if one imposes only a mean photon number constraint on the channel inputs. That is, if we demand that the mean number of photons at the channel input cannot be any larger than some positive number NS, then it is possible to respect this constraint with a code that operates at a rate g(ηNS/(1-p)) where p is the code error probability, η is the channel transmissivity, and g(x) is the entropy of a bosonic thermal state with mean photon number x. Then we prove that a strong converse theorem holds for the classical capacity of this channel (that such a rate-error trade-off cannot occur) if one instead demands for a maximum photon number constraint, in such a way that mostly all of the “shadow” of the average density operator for a given code is required to be on a subspace with photon number no larger than nNS, so that the shadow outside this subspace vanishes as the number n of channel uses becomes large. Finally, we prove that a small modification of the well-known coherent-state coding scheme meets this more demanding constraint.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J.H., and Yuen, H.P., Classical Capacity of the Lossy Bosonic Channel: The Exact Solution, Phys. Rev. Lett., 2004, vol. 92, no. 2, pp. 027902 (4).CrossRefGoogle Scholar
  2. 2.
    Shapiro, J.H., The Quantum Theory of Optical Communications, IEEE J. Sel. Top. Quant. Electron., 2009, vol. 15, no. 6, pp. 1547–1569.CrossRefGoogle Scholar
  3. 3.
    Weedbrook, C., Pirandola, S., García-Patrón, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., and Lloyd, S., G Gaussian Quantum Information, Rev. Modern Phys., 2012, vol. 84, no. 2, pp. 621–669CrossRefGoogle Scholar
  4. 4.
    Holevo, A.S. and Werner, R.F., Evaluating Capacities of Bosonic Gaussian Channels, Phys. Rev. A, 2001, vol. 63, no. 3, pp. 032312 (14).CrossRefGoogle Scholar
  5. 5.
    Yuen, H.P. and Ozawa, M., Ultimate Information Carrying Limit of Quantum Systems, Phys. Rev. Lett., 1993, vol. 70, no. 4, pp. 363–366.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Hausladen, P., Jozsa, R., Schumacher, B., Westmoreland, M., and Wootters, W.K., Classical Information Capacity of a Quantum Channel, Phys. Rev. A, 1996, vol. 54, no. 3, pp. 1869–1876.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Schumacher, B. and Westmoreland, M.D., Sending Classical Information via Noisy Quantum Channels, Phys. Rev. A, 1997, vol. 56, no. 1, pp. 131–138.CrossRefGoogle Scholar
  8. 8.
    Holevo, A.S., The Capacity of the Quantum Channel with General Signal States, IEEE Trans. Inform. Theory, 1998, vol. 44, no. 1, pp. 269–273.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Wilde, M.M., Guha, S., Tan, S.-H., and Lloyd, S., Explicit Capacity-Achieving Receivers for Optical Communication and Quantum Reading, Proc. 2012 IEEE Int. Sympos. on Information Theory (ISIT’2012), Cambridge, MA, USA, July 1–6, 2012, pp. 551–555.Google Scholar
  10. 10.
    Koenig, R., Wehner, S., and Wullschleger, J., Unconditional Security from Noisy Quantum Storage, IEEE Trans. Inform. Theory, 2012, vol. 58, no. 3, pp. 1962–1984.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Winter, A., Coding Theorem and Strong Converse for Quantum Channels, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2481–2485.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Ogawa, T. and Nagaoka, H., Strong Converse to the Quantum Channel Coding Theorem, IEEE Trans. Inform. Theory, 1999, vol. 45, no. 7, pp. 2486–2489.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Winter, A., Coding Theorems of Quantum Information Theory, PhD Thesis, Univ. Bielefeld, Germany, 1999. Available at arXiv:quant-ph/9907077.Google Scholar
  14. 14.
    Koenig, R. and Wehner, S., A Strong Converse for Classical Channel Coding Using Entangled Inputs, Phys. Rev. Lett., 2009, vol. 103, no. 7, pp. 070504 (4).Google Scholar
  15. 15.
    Wilde, M.M., Winter, A., and Yang, D., Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels, arXiv:1306.1586v3 [quant-ph], 2013.Google Scholar
  16. 16.
    Polyanskiy, Y., Channel Coding: Non-Asymptotic Fundamental Limits, PhD Thesis, Princeton Univ., USA, 2010.Google Scholar
  17. 17.
    Winter, A., Compression of Sources of Probability Distributions and Density Operators, arXiv: quant-ph/0208131v1, 2002.Google Scholar
  18. 18.
    Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., and Winter, A., Quantum Reverse Shannon Theorem, arXiv:0912.5537 [quant-ph], 2009.Google Scholar
  19. 19.
    Berta, M., Brandão, F., Christandl, M., and Wehner, S., Entanglement Cost of Quantum Channels, Proc. 2012 IEEE Int. Sympos. on Information Theory (ISIT’2012), Cambridge, MA, USA, July 1–6, 2012, pp. 900–904.Google Scholar
  20. 20.
    Berta, M., Brandão, F., Christandl, M., and Wehner, S., Entanglement Cost of Quantum Channels, IEEE Trans. Inform. Theory, 2013, vol. 59, no. 10, pp. 6779–6795.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Nayak, A., Optimal Lower Bounds for Quantum Automata and Random Access Codes, Proc. 40th Ann. Sympos. on Foundations of Computer Science, New York City, NY, USA, Oct. 17–19, 1999, pp. 369–376. Available at arXiv:quant-ph/9904093.Google Scholar
  22. 22.
    Devetak, I., Harrow, A.W., and Winter, A., A Resource Framework for Quantum Shannon Theory, IEEE Trans. Inform. Theory, 2008, vol. 54, no. 10, pp. 4587–4618.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: Wiley, 2006, 2nd ed.MATHGoogle Scholar
  24. 24.
    Ogawa, T. and Nagaoka, H., Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing, IEEE Trans. Inform. Theory, 2007, vol. 53, no. 6, pp. 2261–2266.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Hoeffding, W., Probability Inequalities for Sums of Bounded Random Variables, J. Amer. Statist. Assoc., 1963, vol. 58, no. 301, pp. 13–30.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Tao, T., Topics in Random Matrix Theory, Providence, R.I.: Amer. Math. Soc., 2012. See also http://terrytao.wordpress.com/2010/01/03/254a-notes-1-concentration-of-measure/.MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Center for Computation and TechnologyLouisiana State UniversityBaton RougeUSA
  2. 2.ICREA & Física Teòrica: Informació i Fenomens QuànticsUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations