Advertisement

Problems of Information Transmission

, Volume 43, Issue 3, pp 225–232 | Cite as

List decoding of the first-order binary Reed-Muller codes

  • I. I. DumerEmail author
  • G. A. Kabatiansky
  • C. Tavernier
Coding Theory

Abstract

A list decoding algorithm is designed for the first-order binary Reed-Muller codes of length n that reconstructs all codewords located within the ball of radius n/2(1 − ɛ) about the received vector and has the complexity of O(n ln2(min{ɛ −2, n})) binary operations.

Keywords

Information Transmission Binary Operation Bend Function List Size Bent Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacWilliams, F.J. and Sloane, N.J.A., The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977. Translated under the title Teoriya kodov, ispravlyayushchikh oshibki, Moscow: Svyaz’, 1979.zbMATHGoogle Scholar
  2. 2.
    Litsyn, S. and Shekhovtsov, O., Fast Decoding Algorithms for First-Order Reed-Muller Codes, Probl. Peredachi Inf., 1983, vol. 19, no. 2, pp. 3–7 [Probl. Inf. Trans. (Engl. Transl.), 1983, vol. 19, no. 2, pp. 87–91].MathSciNetGoogle Scholar
  3. 3.
    Pellikaan, R. and Wu, X-W., List Decoding of q-ary Reed-Muller Codes, IEEE Trans. Inform. Theory, 2004, vol. 50, no. 3, pp. 679–682.CrossRefMathSciNetGoogle Scholar
  4. 4.
    Kabatiansky, G. and Tavernier, C., List Decoding of Reed-Muller Codes, in Proc. 9th Int. Workshop on Algebraic and Combinatorial Coding Theory, Kranevo, Bulgaria, 2004, pp. 230–235.Google Scholar
  5. 5.
    Goldreich, O. and Levin, L.A., A Hard-Core Predicate for All One-Way Functions, in Proc. 21st ACM Symp. on Theory of Computing, Seattle, USA, 1989, pp. 25–32.Google Scholar
  6. 6.
    Elias, P., List Decoding for Noisy Channels, 1957 IRE Wescon Convention Record, Part 2, 1957, pp. 94–104.Google Scholar
  7. 7.
    Bassalygo, L.A., New Upper Bounds for Error Correcting Codes, Probl. Peredachi Inf., 1965, vol. 1, no. 4, pp. 41–44 [Probl. Inf. Trans. (Engl. Transl.), 1965, vol. 1, no. 4, pp. 32–35].MathSciNetGoogle Scholar
  8. 8.
    Goldreich, O., Rubinfeld, R., and Sudan, M., Learning Polynomials with Queries: The Highly Noisy Case, SIAM J. Discrete Math., 2000, vol. 13, no. 4, pp. 535–570.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Charpin, P., private communication, 2006.Google Scholar
  10. 10.
    Dumer, I., Kabatiansky, G., and Tavernier, C., List Decoding of Reed-Muller Codes up to the Johnson Bound with Almost Linear Complexity, in Proc. IEEE Int. Symp. on Information Theory, Seattle, USA, 2006, pp. 138–142.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2007

Authors and Affiliations

  • I. I. Dumer
    • 1
    Email author
  • G. A. Kabatiansky
    • 2
  • C. Tavernier
    • 3
  1. 1.University of CaliforniaRiversideUSA
  2. 2.Kharkevich Institute for Information Transmission ProblemsRASMoscowRussia
  3. 3.THALES CommunicationsColombesFrance

Personalised recommendations