Advertisement

Problems of Information Transmission

, Volume 42, Issue 2, pp 69–76 | Cite as

Remark on the additivity conjecture for a quantum depolarizing channel

  • G. G. Amosov
Information Theory

Abstract

We consider bistochastic quantum channels generated by unitary representations of a discrete group. We give a proof of the additivity conjecture for a quantum depolarizing channel Φ based on the decreasing property of the relative entropy. We show that the additivity conjecture holds for a channel Ξ = Ψ o Φ, where Ψ is a phase damping channel.

Keywords

Hilbert Space Information Transmission Quantum Channel Unitary Representation Relative Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holevo, A.S., Quantum Coding Theorems, Uspekhi Mat. Nauk, 1998, vol. 53, no. 6, pp. 193–230 [Russian Math. Surveys (Engl. Transl.), 1998, vol. 53, no. 6, pp. 1295–1331]; LANL e-print quant-ph/9808023.zbMATHMathSciNetGoogle Scholar
  2. 2.
    Amosov, G.G., Holevo, A.S., and Werner, R.F., On the Additivity Conjecture in Quantum Information Theory, Probl. Peredachi Inf., 2000, vol. 36, no. 4, pp. 25–34 [Probl. Inf. Trans. (Engl. Transl.), 2000, vol. 36, no. 4, pp. 305–313]; LANL e-print quant-ph/0003002.zbMATHGoogle Scholar
  3. 3.
    Cortese, J., The Holevo-Schumacher-Westmoreland Channel Capacity for a Class of Qudit Unital Channels, LANL e-print quant-ph/0211093.Google Scholar
  4. 4.
    Holevo, A.S., Remarks on the Classical Capacity of Quantum Covariant Channels, LANL e-print quant-ph/0212025.Google Scholar
  5. 5.
    Shor, P.W., Equivalence of Additivity Questions in Quantum Information Theory, Comm. Math. Phys., 2004, vol. 246, no. 3, pp. 453–472; LANL e-print quant-ph/0305035.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Amosov, G.G. and Holevo, A.S., On the Multiplicativity Conjecture for Quantum Channels, Teor. Veroyatn. Primen., 2002, vol. 47, no. 1, pp. 143–146 [Theory Probab. Appl. (Engl. Transl.), 2003, vol. 47, no. 1, pp. 123–126]; LANL e-print quant-ph/0103015.zbMATHGoogle Scholar
  7. 7.
    King, C., Additivity for Unital Qubit Channels, J. Math. Phys., 2002, vol. 43, no. 10, pp. 4641–4653; LANL e-print quant-ph/0103156.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    King, C., The Capacity of the Quantum Depolarizing Channel, IEEE Trans. Inform. Theory, 2003, vol. 49, no. 1, pp. 221–229; LANL e-print quant-ph/0204172.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Shor, P.W., Additivity of the Classical Capacity of Entanglement-Breaking Quantum Channels, J. Math. Phys., 2002, vol. 43, no. 9, pp. 4334–4340; LANL e-print quant-ph/0201149.zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fannes, M., Haegeman, B., Mosconyi, M., and Vanpeteghem, D., Additivity of Minimal Entropy Output for a Class of Covariant Channels, LANL e-print quant-ph/0410195.Google Scholar
  11. 11.
    Datta, N., Holevo, A.S., and Suhov, Yu., Additivity for Transpose Depolarizing Channels, LANL e-print quant-ph/0412034.Google Scholar
  12. 12.
    Holevo, A.S. and Shirokov, M.E., On Shor’s Channel Extension and Constrained Channels, Comm. Math. Phys., 2004, vol. 249, no. 2, pp. 417–430; LANL e-print quant-ph/0306196.zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Werner, R.F. and Holevo, A.S., Counterexample to an Additivity Conjecture for Output Purity of Quantum Channels, J. Math. Phys., 2002, vol. 43, no. 9, pp. 4353–4357; LANL e-print quant-ph/0203003.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ohya, M. and Petz, D., Quantum Entropy and Its Use, Berlin: Springer, 1993.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • G. G. Amosov
    • 1
  1. 1.Moscow Institute of Physics and TechnologyState UniversityRussia

Personalised recommendations