Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Details of Structure and Functioning of the Pharyngeal Jaw Apparatus of Ember Parrotfish Scarus rubroviolaceus (Scaridae)

  • 16 Accesses


The structural details of some muscles, ligaments, aponeurotic structures, and osteological features of the pharyngeal jaw apparatus of ember parrotfish Scarus rubroviolaceus were studied. During the preparation, the evidence of the presence of a palatal organ in this species, which is convergently similar to that of benthic fish species of Cyprinidae and Catostomidae, has been found. The indirect effect of contraction of m. geniohyoideus and m. sternohyoideus on the operation of the pharyngeal jaw is discussed. Based on the results of anatomy and analysis of the literature, the interpretation of previously obtained morphofunctional data characterizing the apparatus of the pharyngeal jaws of parrotfish (Scaridae) is corrected using S. rubroviolaceus as an example.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1.

    Liem and Sanderson (1986) speak in favor of a similar effect of the contraction of m. geniohyoideus on the gill grid in Labridae; however, they do not consider the morphological facts leading to this result.

  2. 2.

    The examples of asynchronous operation of bilaterally symmetric visceral PJA muscles have been described previously (Claes and Vree, 1991; Vandewalle et al., 2000).


  1. 1

    Alfaro, M. and Westneat, M.W., Motor patterns of herbivorous feeding: electromyographic analysis of biting in the parrotfishes Cetoscarus bicolor and Scarus iseri,Brain Behav. Evol., 1999, vol. 54, pp. 205–222.

  2. 2

    Alfaro, M., Janovetz, J., and Westneat, M.W., Motor control across trophic strategies: muscle activity of biting and suction feeding fishes, Am. Zool., 2001, vol. 41, pp. 1266–1279.

  3. 3

    Alwany, M.A., Thaler, E., and Stachowitsch, M., Parrotfish bioerosion on Egyptian Red Sea reefs, J. Exp. Mar. Biol. Ecol., 2009, vol. 371, pp. 170–176.

  4. 4

    Anker, G.Ch., The morphology of the head-muscles of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae), Neth. J. Zool., 1978, vol. 28, no. 2, pp. 234–271.

  5. 5

    Barel, C.D.N., Witte, F., and van Oijen, M.J.P., The shape of the skeletal elements in the head of a generalized Haplochromis species: H. elegans Trewavas 1933 (Pisces, Cichlidae), Neth. J. Zool., 1976, vol. 26, no. 2, pp. 163–265.

  6. 6

    Bellwood, D.R., The functional morphology, systematics and behavioral ecology of parrotfihes (family Scaridae), PhD Thesis, Townsville: James Cook Univ., 1986.

  7. 7

    Bellwood, D.R., A Phylogenetic Study of the Parrotfishes Family Scaridae (Pisces: Labroidei), with a Revision of Genera, Sydney: Austral. Mus., 1994.

  8. 8

    Bellwood, D.R., Production and reworking of sediment by parrotfishes (family Scaridae) on the Great Barrier Reef, Australia, Mar. Biol., 1996, vol. 125, pp. 795–800.

  9. 9

    Board, P.A., The feeding mechanism of the fish Sparisoma cretense,Proc. Zool. Soc. Lond., 1956, vol. 127, no. 1, pp. 59–77.

  10. 10

    Bonaldo, R.M., and Bellwood, D.R., Size-dependent variation in the functional role of the parrotfish Scarus rivulatus on the Great Barrier Reef, Australia, Mar. Ecol.: Progr. Ser., 2008, vol. 360, pp. 237–244.

  11. 11

    Bonaldo, R.M., Krajewski, J.P., and Bellwood, D.R., Relative impact of parrotfish grazing scars on massive Porites corals at Lizard island, Great Barrier Reef, Mar. Ecol.: Progr. Ser., 2011, vol. 423, pp. 223–233.

  12. 12

    Bonaldo, R.M., Hoey, A.S., and Bellwood, D.R., The ecosystem roles of parrotfishes on tropical reefs, Oceanogr. Mar. Biol.: Annu. Rev., 2014, vol. 52, pp. 81–132.

  13. 13

    Brock, R.E., An experimental study on the effects of grazing by parrotfishes and role of refuges in benthic community structure, Mar. Biol., 1979, vol. 51, pp. 381–388.

  14. 14

    Brown, E. and Muir, B.S., Analysis of ram ventilation of fish gills with application to skipjack tuna (Katsuwonus pelamis), J. Fish. Res. Board Can., 1970, vol. 27, no. 9, pp. 1637–1652.

  15. 15

    Bruggemann, J.H., van Kessel, A.M., van Rooij, J.M., and Breeman, A.M., Bioerosion and sediment ingestion by the Caribbean parrotfish Scarus vetula and Sparisoma viride: implications of fish size, feeding mode and habitat use, Mar. Ecol.: Progr. Ser., 1996, vol. 134, pp. 59 –71.

  16. 16

    Camp, A.L., Konow, N., and Sanford, C.J., Functional morphology and biomechanics of the tongue-bite apparatus in salmonid and osteoglossomorph fishes, J. Anat., 2009, vol. 214, pp. 717–728.

  17. 17

    Carr, A., Tibbetts, I.R., Kemp, A., Truss, R., and Drennan, J., Inferring parrotfish (Teleostei: Scaridae) pharyngeal mill function from dental morphology, wear, and microstructure, J. Morphol., 2006, vol. 267, pp. 1147–1156.

  18. 18

    Cernohorsky, N.H., McClanahan, T.R., Babu, I., and Horsak, M., Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean, Coral Reefs, 2015, vol. 34, no. 4, pp. 1023–1035. https://doi.org/10.1007/s00338-015-1331-x

  19. 19

    Chao, L.N., Digestive system and feeding habits of the cunner, Tautogolabrus adspersus, a stomachless fish, Fish. Bull., 1973, vol. 71, no. 2, pp. 565–586.

  20. 20

    Chen, P.-Y., Schirer, J., Simpson, A., et al., Predation versus protection: fish teeth and scales evaluated by nanoindentation, J. Mater. Res., 2012, vol. 27, no. 1, pp. 100–112.

  21. 21

    Claes, G. and Vree, F., Kinematics of the pharyngeal jaws during feeding in Oreochromis niloticus (Pisces, Perciformes), J. Morphol., 1991, vol. 208, pp. 227–245.

  22. 22

    Clements, K.D. and Bellwood, D.R., A comparison of the feeding mechanisms of two herbivorous labroid fishes, the temperate Odax pullus and the tropical Scarus rubroviolaceus,Austral. J. Mar. Freshwater Res., 1988, vol. 39, pp. 87–107.

  23. 23

    Clements, K.D., German, D.P., Piche, J., et al., Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages, Biol. J. Linn. Soc., 2016, vol. 120, no. 4, pp. 729–751.

  24. 24

    Cole, F.J., Observations on the structure and morphology of the cranial nerves and lateral sense organs of fishes; with special reference to the genus Gadus, Trans. Linn. Soc.Zool. Ser. 2, 1898, vol. 7, no. 5, pp. 17–221.

  25. 25

    Delsman, H.C., Fishes with protrusile mouths, Treubia, 1925, vol. 6, no. 2, pp. 98–106.

  26. 26

    Doosey, M.H. and Bart, H.L., Jr., Morphological variation of the palatal organ and chewing pad of catostomidae (Teleostei: Cypriniformes), J. Morphol., 2011, vol. 272, pp. 1092–1108.

  27. 27

    Dromard, C., Bouchon-Navaro, Y., Harmelin-Vivien, M., and Bouchon, C., Diversity of trophic niches among Scaridae (Guadeloupe, Lesser Antilles), Proc. Annu. Gulf Caribb. Fish. Inst., 2013, vol. 66, pp. 259–265.

  28. 28

    Drucker, E.G. and Jensen, J.S., Functional analysis of a specialized prey processing behavior: winnowing by surfperches (Teleostei: Embiotocidae), J. Morphol., 1991, vol. 210, pp. 267–287.

  29. 29

    Dzerzhinskii, F.Ya., Sravnitel’naya anatomiya pozvonochnykh zhivotnykh (Comparative Anatomy of Vertebrates), Moscow: Aspekt Press, 2005.

  30. 30

    Elshoud-Oldenhave, M.J.W., Prey capture in the pike-perch, Stizostedion lucioperca (Teleostei, Percidae): a structural and functional analysis, Zoomorphology, 1979, vol. 93, pp. 1–32.

  31. 31

    Francini-Filho, R.B., Moura, R.L., Ferreira, C.M., and Coni, E.O.C., Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups, Neotrop. Ichthyol., 2008, vol. 6, no. 2, pp. 191–200.

  32. 32

    Gierse, V.A., Untersuchungen über das Gehirn und die Kopfnerven von Cyclothone acclinidens,J. Morphol., 1904, vol. 32, pp. 602–686.

  33. 33

    Gobalet, K.W., Morphology of the parrotfish pharyngeal jaw apparatus, Am. Zool., 1989, vol. 29, pp. 319–331.

  34. 34

    Goedel, W., A contribution to the comparative and functional anatomy of the head of Tilapia (Cichlidae, Teleostei), Zool. Jahrb. Anat., 1974, vol. 92, pp. 220–274.

  35. 35

    Graaf, P.J.F., Innervation pattern of the gill arches and gills of the carp (Cyprinus carpio), J. Morphol., 1990, vol. 206, pp. 71–78.

  36. 36

    Green, A.L. and Bellwood, D.R., Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience: A Practical Guide for Coral Reef Managers in the Asia Pacific Region, Gland: IUCN, 2009.

  37. 37

    Gromova, E.S. and Makhotin, V.V., Functional morphology of the visceral apapratus of Atlantic salmon Salmo salar (Salmonidae), J. Ichthyol., 2016, vol. 56, no. 4, pp. 505–521.

  38. 38

    Gromova, E.S. and Makhotin, V.V., Maxillary apparatus in feeding of the silver carp Hypophthalmichthys molitrix (Cyprinidae), J. Ichthyol., 2018, vol. 58, no. 6, pp. 857–877.

  39. 39

    Gromova, E.S., Dzerzhinsky, F.J., and Makhotin, V.V., Morphofunctional features of visceral apparatus of silver arawana Osteoglossum bicirrhosum (Osteoglossidae), J. Ichthyol., 2017, vol. 57, no. 4, pp. 495–508.

  40. 40

    Grubich, J.R., Huskey, S., Crofts, S., et al., Mega-bites: extreme jaw forces of living and extinct piranhas (Serrasalmidae), Sci. Rep., 2012, vol. 2, no. 1009, pp. 1–9.

  41. 41

    Handrick, V.K., Zur Kenntnis des Nervensystems und der Leuchtorgane des Argyropelecus hemigymnus,Zoologica, 1901, vol. 32, pp. 1–68.

  42. 42

    Harrison, G., The cranial nerves of the teleost Trichiurus lepturus,J. Morphol., 1981, vol. 167, pp. 119–134.

  43. 43

    Herrick, C.J., The cranial and first spinal nerves of Menidia; a contribution upon the nerve components of the bony fishes, J. Comp. Neurol., 1899, vol. 9, no. 1, pp. 419–455.

  44. 44

    Herring, S.W., Grimm, A.F., and Grimm, B.R., Functional heterogeneity in a multipinnate muscle, Am. J. Anat., 1979, vol. 154, no. 4, pp. 563–576.

  45. 45

    Hofmann, R.R., Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system, Oecologia, 1989, vol. 78, pp. 443–457.

  46. 46

    Hoogenboezem, W., Lammens, E.H.R., Vugt, Y., and Osse, J.W.M., A model for switching between particulate-feeding and filter-feeding in the common bream, Abramis brama,Environ. Biol. Fish., 1992, vol. 33, pp. 13–21.

  47. 47

    Howard, K.G., Claisse, J.T., Clark, T.B., et al., Home range and movement patterns of the redlip parrotfish (Scarus rubroviolaceus) in Hawaii, Mar. Biol., 2013, vol. 160, pp. 1583–1595.

  48. 48

    Kaufman, L.S. and Liem, K.F., Fishes of the suborder Labroidei (Pisces: Perciformes): phylogeny, ecology, and evolutionary significance, Breviora. Mus. Comp. Zool., 1982, vol. 472, pp. 1–19.

  49. 49

    Kendall, J.L., Lucey, K.S., Jones, E.A., et al., Mechanical and energetic factors underlying gait transitions in bluegill sunfish (Lepomis macrochirus), J. Exp. Biol., 2007, vol. 210, pp. 4265–4271.

  50. 50

    Kobelkowsky, A., Morphology and dissection technique of the kidney of the grey snapper Lutjanus griseus (Teleostei: Lutjanidae), Int. J. Morphol., 2013, vol. 31, no. 2, pp. 553–561.

  51. 51

    Koh, T.J. and Grabiner, M.D., Cross talk in surface electromyograms of human hamstring muscles, J. Orthop. Res., 1992, vol. 10, pp. 701–709.

  52. 52

    Konow, N. and Sanford, C.P.J., Biomechanics of a convergently derived prey-processing mechanism in fishes: evidence from comparative tongue bite apparatus morphology and raking kinematics, J. Exp. Biol., 2008, vol. 211, pp. 3378–3391.

  53. 53

    Korsmeyer, K.E., Steffensen, J.F., and Herskin, J., Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus), J. Exp. Biol., 2002, vol. 205, pp. 1253–1263.

  54. 54

    Lauder, G.V., Functional design and evolution of the pharyngeal jaw apparatus in euteleostean fishes, Zool. J. Linn. Soc., 1983a, vol. 77, pp. 1–38.

  55. 55

    Lauder, G.V., Functional and morphological bases of trophic specialization in sunfishes (Teleostei, Centrarchidae), J. Morphol., 1983b, vol. 178, pp. 1–21.

  56. 56

    Lauder, G.V., Food capture, in Fish Biomechanics, Webb, P.W. and Weihs, D., Eds., New York: Praeger, 1983c, pp. 280–311.

  57. 57

    Liao, Y.-C., Chen, L.-S., Shao, K.-T., and Chen, I.-Sh., A review of parrotfishes (Perciformes: Scaridae) of Taiwan with descriptions of four new records and one doubtful species, Zool. Stud., 2004, vol. 43, no. 3, pp. 519–536.

  58. 58

    Liem, K.F., Biological versatility, evolution, and food resource exploitation in African cichlid fishes, Am. Zool., 1975, vol. 15, pp. 427–454.

  59. 59

    Liem, K.F., Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlid fishes I. Piscivores, J. Morphol., 1978, vol. 158, pp. 323–360.

  60. 60

    Liem, K.F., The pharyngeal jaw apparatus of the Embiotocidae (Teleostei): a functional and evolutionary perspective, Copeia, 1986, no. 2, pp. 311–323.

  61. 61

    Liem, K.F. and Greenwood, P.H., A functional approach to the phylogeny of the pharyngognath Teleosts, Am. Zool., 1981, vol. 21, pp. 83–101.

  62. 62

    Liem, K.F. and Sanderson, S.L., The pharyngeal jaw apparatus of labrid fishes: a functional morphological perspective, J. Morphol., 1986, vol. 187, pp. 143–158.

  63. 63

    Lister, A.M., The morphological distinction between bones and teeth of fallow deer (Dama dama) and red deer (Cervus elaphus), Int. J. Osteoarch., 1996, vol. 6, pp. 119–143.

  64. 64

    Lokrantz, J., Nyström, M., Thyresson, M., and Johansson, C., The non-linear relationship between body size and function in parrotfishes, Coral Reefs, 2008, vol. 27, pp. 967–974.

  65. 65

    Luca, C.J. and Merletti, R., Surface myoelectric signal cross-talk among muscles of the leg, Electroencephalogr. Clin. Neurophysiol., 1988, vol. 69, pp. 568–575.

  66. 66

    Maheshwari, S.C., The cranial nerves of Mastacembelus armatus (Lacepede), Jpn. J. Ichthyol., 1965, vol. 12, nos. 3–6, pp. 89–98.

  67. 67

    Makhotin, V.V. and Gromova, E.S., Detailed structure of the skeleton, muscles, and connective-tissue elements in the head of silver carp Hypophthalmichthys molitrix (Cyprinidae) in relationship with the functional features of its visceral apparatus, J. Ichthyol., 2019, vol. 59, no. 1, pp. 1–24.

  68. 68

    Mikami, Y., Phylogenic relationship of Labridae species deduced from comparative dissection, Anat. Rec., 2013, vol. 296, pp. 788–797.

  69. 69

    Mithel, M., The cranial nerves of the sisorid catfish Bagarius bagarius,Copeia, 1964, no. 4, pp. 673–678.

  70. 70

    Monod, Th., Notes sur le squelette visceral des Scaridae, Bull. Soc. Hist. Nat. Toulouse, 1951, vol. 86, pp. 191–194.

  71. 71

    Nakae, M. and Sasaki, K., Peripheral nervous system of the ocean sunfish Mola mola (Tetraodontiformes: Molidae), Ichthyol. Res., 2006, vol. 53, pp. 233–246.

  72. 72

    Nakae, M. and Sasaki, K., Review of spino-occipital and spinal nerves in Tetraodontiformes, with special reference to pectoral and pelvic fin muscle innervation, Ichthyol. Res., 2007, vol. 54, pp. 333–349.

  73. 73

    Nakae, M. and Sasaki, K., Branchial arch muscle innervation by the glossopharyngeal (IX) and vagal (X) nerves in Tetraodontiformes, with special reference to muscle homologies, J. Morphol., 2008, vol. 269, pp. 674–690.

  74. 74

    Nelson, G.J., Gill arches of some teleostean fishes of the families Girellidae, Pomacentridae, Embiotocidae, Labridae and Scaridae, J. Nat. Hist., 1967, vol. 1, pp. 289–293.

  75. 75

    Nelson, J.S., Fishes of the World, New York: Wiley, 2006.

  76. 76

    Nicol, J.A.C., Autonomic nervous systems in lower chordates, Biol. Rev., 1952, vol. 27, no. 1, pp. 1–48.

  77. 77

    Nilsson, S., Innervation and pharmacology of the gills, Fish Physiol., 1984, vol. 10, pp. 185–227.

  78. 78

    Ong, L. and Holland, K.N., Bioerosion of coral reefs by two Hawaiian parrotfishes: species, size differences and fishery implications, Mar. Biol., 2010, vol. 157, no. 6, pp. 1313–1323.

  79. 79

    Osse, J.W.M., Functional morphology of the head of the perch (Perca fluviatilis L.): an electromyographic study, Neth. J. Zool., 1969, vol. 19, no. 3, pp. 289–392.

  80. 80

    Pereira, P.H.C., Santos, M., Lippi, D.L., and Silva, P., Ontogenetic foraging activity and feeding selectivity of the Brazilian endemic parrotfish Scarus zelindae,PeerJ, 2016, vol. 4, p. e2536. https://doi.org/10.7717/peerj.2536

  81. 81

    Price, S.A., Wainwright, P.C., Bellwood, D.R., et al., Functional innovations and morphological diversification in parrotfish, Evolution, 2010, vol. 64, no. 10, pp. 3057–3068.

  82. 82

    Randall, J.E., Grazing effect on sea grasses by herbivorous reef fishes in the West Indies, Ecology, 1965, vol. 46, no. 3, pp. 255–260.

  83. 83

    Rognes, K., Head skeleton and jaw mechanism in Labrinae (Teleostei: Labridae) from Norwegian waters, Acta Univ. Berg., Ser. Math. Rer. Nat., 1973, no. 4, pp. 1–151.

  84. 84

    Romeis, B., Mikroskopische Technik, Munich: Oldenbourg, 1948.

  85. 85

    Saxena, P.K., The cranial nerves in Hilsa ilisha (Ham.) and Cirrhina mrigala (Ham.), Acta Anat., 1969, vol. 74, pp. 197–213.

  86. 86

    Schultz, L.P., Review of the parrotfishes family Scaridae, Bull. U.S. Natl. Mus., 1958, vol. 214, pp. 1–133.

  87. 87

    Schultz, L.P., The taxonomic status of the controversial genera and species of parrotfishes with a descriptive list (family Scaridae), Smithsonian Contrib. Zool., 1969, no. 17, pp. 1–50.

  88. 88

    Schulz, U. and Berg, R., The migration of ultrasonic-tagged bream, Abramis brama (L.), in Lake Constance (Bodensee-Untersee), J. Fish Biol., 1987, vol. 31, pp. 409–414.

  89. 89

    Sibbing, F.A. and Uribe, R., Regional specializations in the oro-pharyngeal wall and food processing in the carp (Cyprinus carpio L.), Neth. J. Zool., 1985, vol. 35, no. 3, pp. 377–422.

  90. 90

    Springer, V.G. and Freihofer, W.C., Study of the monotypic fish family Pholidichthyidae (Perciformes), Smithsonian Contrib. Zool., 1976, no. 216, pp. 1–41.

  91. 91

    Stiassny, M.L.J., Phylogenetic versus convergent relationship between piscivorous cichlid fishes from lakes Malawi and Tanganyika, Bull. Br. Mus. Nat. Hist. Zool., 1981, vol. 40, no. 3, pp. 67–101.

  92. 92

    Stiassny, M.L.J., The relationships of the neotropical genus Cichla (Perciformes, Cichlidae): a phyletic analysis including some functional considerations, J. Zool. Lond., 1982, vol. 197, pp. 427–453.

  93. 93

    Stiassny, M.L.J. and Jensen, J.S., Labroid intrarelationships revisited: morphological complexity, key innovations, and the study of comparative diversity, Bull. Mus. Comp. Zool., 1987, vol. 151, no. 5, pp. 269–319.

  94. 94

    Tedman, R.A., Comparative study of the cranial morphology of the labrids Choerodon venustus and Labroides dimidiatus and the scarid Scarus fasciatus (Pisces: Perciformes). I. Head skeleton, Austral. J. Mar. Freshwater Res., 1980, vol. 31, pp. 337–349.

  95. 95

    Tibbetts, I.R. and Carseldine, L., Anatomy of a hemiramphid pharyngeal mill with reference to Arrhamphus sclerolepis krefftii (Steindachner) (Teleostei: Hemiramphidae), J. Morphol., 2003, vol. 255, pp. 228–243.

  96. 96

    Tsessarskii, A.A., Morphology and evolution of skull of Acipenseriformes, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Evol. Morphol. Ecol. Anim., Russ. Acad. Sci., 1993.

  97. 97

    Ungar, P.S., Mammalian dental function and wear: a review, Biosurf.Biotribol., 2015, vol. 1, no. 1, pp. 25–41.

  98. 98

    Vandewalle, P., Havard, M., Claes, G., and Vree, F., Mouvements des machoires pharyngiennes pendant la prise de nourriture chez le Serranus scriba (Linnk, 1758) (Pisces, Serranidae), Can. J. Zool., 1992, vol. 70, pp. 145–160.

  99. 99

    Vandewalle, P., Parmentier, E., and Chardon, M., The branchial basket in teleost feeding, Cybium, 2000, vol. 24, no. 4, pp. 319–342.

  100. 100

    Wainwright, P.C., Functional morphology of the pharyngeal jaw apparatus in perciform fishes: an experimental analysis of the Haemulidae, J. Morphol., 1989, vol. 200, pp. 231–245.

  101. 101

    Wainwright, P.C., Functional morphology of the pharyngeal jaw apparatus, in Fish Biomechanics, Shadwick, R. and Lauder, G.V., Eds., Chicago: Elsevier, 2005, pp. 77–101.

  102. 102

    Yamaoka, K., Pharyngeal jaw structure in labrid fish, Publ. Seto Mar. Biol. Lab., 1978, vol. 24, nos. 4–6, pp. 409–426.

  103. 103

    Yamaoka, K., Some pharyngeal jaw muscles of Calotomus japonicus (Scaridae, Pisces), Contrib. Seto Mar. Bio. Lab., 1980, vol. 661, pp. 315–322.

Download references

Author information

Correspondence to V. V. Maktotin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by D. Martynova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gromova, E.S., Maktotin, V.V. Details of Structure and Functioning of the Pharyngeal Jaw Apparatus of Ember Parrotfish Scarus rubroviolaceus (Scaridae). J. Ichthyol. 59, 907–927 (2019). https://doi.org/10.1134/S0032945219060031

Download citation


  • ember parrotfish Scarus rubroviolaceus
  • pharyngeal jaw apparatus
  • functional morphology
  • palatal organ
  • food grinding
  • feeding type