Advertisement

Journal of Ichthyology

, Volume 59, Issue 5, pp 776–785 | Cite as

Natural Hybridization in Spined Loaches of the Genera Cobitis and Sabanejewia (Cobitidae)

  • E. D. Vasil’evaEmail author
  • V. P. Vasil’ev
Article
  • 6 Downloads

Abstract

A detailed description of the phenotypically hybrid spined loach caught in the Malyi Kyzylagachskii Bay is given in comparison with the three known species of loach fish from the Bay basin: the Caspian spined loach Sabanejewia caspia, Cobitis saniae, and the Khvalynskaya spined loach C. amphilekta. Hybridization of the first two species supported by their sympatry, overlapping spawning periods, and a noticeable difference in numbers in co-inhabited biotopes is confirmed. The extremely low frequency of hybridization of the Caspian spined loach and C. saniae is explained by the significant differences in the ecology of spawning and in the spawning behavior of the two species.

Keywords:

Caspian spined loach Sabanejewia caspia Cobitis saniae Cobitis amphilekta hybrid morphological characteristic frequency of hybridization 

Notes

ACKNOWLEDGMENTS

We are deeply grateful to the local resident Namik Ganbarov for help in collecting the material in 2018.

FUNDING

Taxonomic studies of Ponto-Caspian fish on the basis of museum collections are carried out in the framework of Moscow State University’s Noah’s Ark project and state task AAAA-A16-116021660077-3.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Abdurakhmanov, Yu.A., Ryby presnykh vod Azerbaidzhana (Freshwater Fishes of Azerbaijan), Baku: Akad. Nauk AzSSR, 1962.Google Scholar
  2. 2.
    Avise, J.C., Smith, J.J., and Ayala, F.J., Adaptive differentiation with little genic change between two native California minnows, Evolution, 1975, vol. 29, no. 2, pp. 411–426.CrossRefGoogle Scholar
  3. 3.
    Bă nărescu, P., Nalbant, T.T., and Chelmu, S., Revision and geographical variation of Sabanejewia aurata in Romania and the origin of S. bulgarica and S. romanica (Pisces, Cobitidae), Ann. Zool. Bot. Bratislava, 1972, vol. 75, pp. 1–49.Google Scholar
  4. 4.
    Berrebi, P., Dupont, F., Cattaneo-Berrebi, G., and Crivelli, A.J., An isozyme study of the natural cyprinid hybrid Alburnus alburnus × Rutilus rubilio in Greece, J. Fish Biol., 1989, vol. 34, no. 2, pp. 307–313.CrossRefGoogle Scholar
  5. 5.
    Bohlen, J., Similarities and differences in the reproductive biology of loaches (Cobitis and Sabanejewia) under laboratory conditions, Folia Zool., 2000, vol. 49, suppl. 1, pp. 179–186.Google Scholar
  6. 6.
    Bohlen, J., Ráb, P., Šlechtová, V., et al., Hybridogeneous biotypes in spined loaches (genus Cobitis) in Germany with implications for conservation, in Conservation of Freshwater Fishes: Options for the Future, Collares-Pereira, M.J., Coelho, M.M., and Cowx, I.G., Eds., Oxford: Blackwell, 2002, pp. 311–321.Google Scholar
  7. 7.
    Crivelli, A.J. and Dupont, F., Biometrical and biological features of Alburnus alburnus × Rutilus rubilio natural hybrids from Lake Mikri Prespa, northern Greece, J. Fish Biol., 2006, vol. 31, no. 6, pp. 721–733.CrossRefGoogle Scholar
  8. 8.
    Eagderi, S., Jouladeh-Roudbar, A., Jalili, P., et al., Taxonomic status of the genus Cobitis Linnaeus, 1758 (Teleostei: Cobitidae) in the southern Caspian Sea basin, Iran with description of a new species, FishTaxa, 2017, vol. 2, no. 1, pp. 48–61.Google Scholar
  9. 9.
    Economidis, P.S. and Sinis, A.I., A natural hybrid of Leuciscus cephalus macedonicus × Chalcalburnus chalcoides macedonicus (Pisces, Cyprinidae) from Lake Volvi (Macedonia, Greece), J. Fish Biol., 1988, vol. 32, pp. 593–605.CrossRefGoogle Scholar
  10. 10.
    Fujimoto, T., Yasui, G.S., Yoshikawa, H., et al., Genetic and reproductive potential of spermatozoa of diploid and triploid males obtained from interspecific hybridization of Misgurnus anguillicaudatus female with M. mizolepis male, J. Appl. Ichthyol., 2008, vol. 24, pp. 430–437.CrossRefGoogle Scholar
  11. 11.
    Gambetta, L., Sulla variabilita del cobite fluviatile (Cobitis taenia) e sul rapporto numerico dei sessi, Bull. Mus. Zool. Anat. Comp. Univ. Torino, 1934, vol. 44, pp. 297–324.Google Scholar
  12. 12.
    Greenfield, D.W. and Greenfield, T., Introgressive hybridization between Gila orcutti and Hesperoleucus symmetricus (Pisces: Cyprinidae) in the Cuyama River Basin, California: I. Meristics, morphometrics and breeding, Copeia, 1972, no. 4, pp. 849–859.Google Scholar
  13. 13.
    Hubbs, C.L., Hybridization between fish species in nature, Syst. Zool., 1955, vol. 4, no. 1, pp. 1–20.CrossRefGoogle Scholar
  14. 14.
    Itono, M., Okabayashi, N., Morishima, K., et al., Cytological mechanisms of gynogenesis and sperm incorporation in unreduced diploid eggs of the clonal loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae), J. Exp. Zool. A, 2007, vol. 307, pp. 35–50.CrossRefGoogle Scholar
  15. 15.
    Janko, K., Bohlen, J., Lamatsch, D., et al., The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages – on the evolution of polyploidy in asexual vertebrates, Genetica, 2007, vol. 131, no. 2, pp. 185–194.CrossRefGoogle Scholar
  16. 16.
    Janko, K., Kotusz, J., De Gelas, K., et al., Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones, PLoS One, 2012, vol. 7, no. 9, p. e45384.  https://doi.org/10.1371/journal.pone.0045384 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kasymov, A.G., Presnovodnaya fauna Kavkaza (Freshwater Fauna of Caucasus), Baku: ELM, 1972.Google Scholar
  18. 18.
    Kim, D.S., Nam, Y.K., and Park, I.-S., Survival and karyological analysis of reciprocal diploid and triploid hybrids between mud loach (Misgurnus mizolepis) and pond loach (Misgurnus anguillicaudatus), Aquaculture, 1995, vol. 135, no. 4, pp. 257–265.CrossRefGoogle Scholar
  19. 19.
    Kwan, Y.S., Ko, M.H., and Won, Y.J., Genomic replacement of native Cobitis lutheri with introduced C. tetralineata through a hybrid swarm following the artificial connection of river systems, Ecol. Evol., 2014, vol. 4, no. 8, pp. 1451–1465.CrossRefGoogle Scholar
  20. 20.
    Ludwig, A., Bohlen, J., Wolter, C., and Pitra, C., Phylogenetic relationships and historical biogeography of spined loaches (Cobitidae, Cobitis and Sabanejewia) as indicated by variability of mitochondrial DNA, Zool. J. Linn. Soc., 2001, vol. 131, no. 3, pp. 381–392.CrossRefGoogle Scholar
  21. 21.
    Morishima, K., Nakamura-Shiokawa, Y., Bando, E., et al., Cryptic clonal lineages and genetic diversity in the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from nuclear and mitochondrial DNA analyses, Genetica, 2008, vol. 132, pp. 159–171.CrossRefGoogle Scholar
  22. 22.
    Nikolyukin, N.I., Otdalennaya gibridizatsiya osetrovykh i kostistykh ryb (teoriya i praktika) (Remote Hybridization of Acipenseridae and Teleostei: Theory and Practice), Moscow: Pishchevaya Prom-st’, 1972.Google Scholar
  23. 23.
    Perdices, A., Doadrio, I., Economidis, P.S., et al., Pleistocene effects on the European freshwater fish fauna: double origin of the cobitid genus Sabanejewia in the Danube basin (Osteichthyes: Cobitidae), Mol. Phylogenet. Evol., 2003, vol. 26, pp. 289–299.CrossRefGoogle Scholar
  24. 24.
    Perdices, A., Bohlen, J., Slechtova, V., and Doadrio, I., Molecular evidence for multiple origins of the European spined loaches (Teleostei, Cobitidae), PLoS One, 2016, vol. 11, no. 1, pp. 1–18.  https://doi.org/10.1371/journal.pone.0144628 CrossRefGoogle Scholar
  25. 25.
    Saitoh, K., Kim, I.-S., and Lee, E.-H., Mitochondrial gene introgression between spined loaches via hybridogenesis, Zool. Sci., 2004, vol. 21, pp. 795–798.CrossRefGoogle Scholar
  26. 26.
    Ünver, B. and Erk’akan, F., A natural hybrid of Leuciscus cephalus (L.) and Chalcalburnus chalcoides (Guldenstadt) (Osteichthyes: Cyprinidae) from Lake Todurge (Sivas, Turkey), J. Fish Biol., 2005, vol. 66, no. 4, pp. 899–910.CrossRefGoogle Scholar
  27. 27.
    Vasil’ev, V.P., Possible way of occurrence of tetraploid forms in vertebrates, Priroda (Moscow), 1981, no. 4 (788), pp. 112–113.Google Scholar
  28. 28.
    Vasil’ev, V.P. and Vasil’eva, E.D., New diploid-polyploid complex in fishes, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 1, pp. 250–252.Google Scholar
  29. 29.
    Vasil’ev, V.P. and Vasil’eva, E.D., Reticular speciation and polyploid evolution in fishes, in Aktual’nye problemy sovremennoi ikhtiologii (Current Problems of Modern Ichthyology), Moscow: KMK, 2010, pp. 148–177.Google Scholar
  30. 30.
    Vasil’ev, V.P., Vasil’eva, E.D., and Osinov, A.G., The first evidence in terms of the general hypothesis of reticular speciation in vertebrates, Dokl. Akad. Nauk SSSR, 1983, vol. 271, no. 4, pp. 1009–1012.Google Scholar
  31. 31.
    Vasil’ev, V.P., Vasil’eva, E.D., and Osinov, A.G., The evolution of diploid-triploid-tetraploid complex of the genus Cobitis (Cobitidae), Sb. Tr. Zool. Muz. MGU, 1993, vol. 30, pp. 6–33.Google Scholar
  32. 32.
    Vasil’eva, E.D., Comparative morphological analysis of two populations of loaches (genus Cobitis, Cobitidae) different by spot number at the base of caudal fin, Vopr. Ikhtiol., 1984, vol. 24, no. 1, pp. 43–53.Google Scholar
  33. 33.
    Vasil’eva, E.D. and Pozdnyak, V.G., Morphological characteristic of the Cis-Caucasian spined loach Sabanejewia caucasica (Berg) (Cobitidae), Vopr. Ikhtiol., 1986, vol. 26, no. 3, pp. 402–409.Google Scholar
  34. 34.
    Vasil’eva, E.D. and Vasil’ev, V.P., Cobitis amphilekta sp. nova, a new species of spined loaches (Cobitidae, Cypriniformes) from the Caspian Sea basin, J. Ichthyol., 2012, vol. 52, no. 3, pp. 200–206.CrossRefGoogle Scholar
  35. 35.
    Vasil’eva, E.D. and Vasil’ev, V.P., Caspian spined loach Sabanejewia caspia: well-known but practically unexplored species of the Cobitidae family: peculiarities of morphology, karyotype, distribution, and postulated phylogenetic links, J. Ichthyol., 2019, vol. 59, no. 2, pp. 144–159.CrossRefGoogle Scholar
  36. 36.
    You, C., Yu, X., and Tong, J., Detection of hybridization between two loach species (Paramisgurnus dabryanus and Misgurnus anguillicaudatus) in wild populations, Environ. Biol. Fish., 2009, vol. 86, pp. 65–71.CrossRefGoogle Scholar
  37. 37.
    Zhang, G., Sun, X., Zhang, G., et al., Molecular characteristics of mitochondrial DNA and phylogenetic analysis of the hybrid loach of Misgurnus anguillicaudatus (female) and Paramisgurnus dabryanus ssp. (male), Mitochondrial DNA, Part B, 2018, vol. 3, no. 2, pp. 545–546.CrossRefGoogle Scholar
  38. 38.
    Zhao, Y., Fujimoto, T., Pšenička, M., et al., Non-motile tetraploid spermatozoa of Misgurnus loach hybrids, Fish Sci., 2016, vol. 82, pp. 127–135.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Zoological Museum of Moscow State UniversityMoscowRussia
  2. 2.Institute of Ecology and Evolution, Russian Academy of Sciences (IEE RAS)MoscowRussia

Personalised recommendations