Advertisement

Journal of Ichthyology

, Volume 59, Issue 5, pp 754–765 | Cite as

The First Complete Mitochondrial Genome Sequence in the Genus Aphanius (Teleostei)

  • A. TeimoriEmail author
  • M. Motamedi
Article

Abstract

In the present study, for the first time we isolated and characterized the complete mitochondrial genome sequence of the endangered Farsi killifish Aphanius farsicus by long polymerase chain reaction amplification, and primer walking methods. The circular mitogenome of A. farsicus consisting of 16 485 base pairs encodes 13 polypeptides (protein-coding genes), the 12S and 16S ribosomal RNAs, and 22 transfer RNAs and an 884 bp D-loop control region. These genes are ordered in the same way as most other vertebrates. The overall nucleotide composition of this genome was 27.09 for A; 27.87 for T; 16.89 for G; and 28.14% for C (GC content of 45%, and AT content of 55%). The genus Aphanius has already been in the family Cyprinodontidae. However, the name Aphaniidae has recently been proposed as valid family for the members of the genus Aphanius (the Western Palaearctic killifishes), while the family Cyprinodontidae is restricted to the New World genera such as Cyprinodon, Floridichthys and Jordanella. Based on the phylogenetic relationships achieved in the present study, we recommend that the validation of family Aphaniidae still needs more phylogenetic supports, and this can be investigated by adding more sequences of the Aphanius species. The availability of this mitogenome will also provide a set of useful data for studying on population genetic diversity and molecular evolution and facilitate evaluations of A. farsicus genetic structure for management and conservation of this endangered species.

Keywords:

Aphanius mitogenome gene arrangement phylogenetic relationship population genetic diversity Iran 

Notes

ACKNOWLEDGMENTS

The authors are grateful to A. Khajooei for her assistance with laboratory experiments, and M. Ebrahimi for giving the permission of A. farsicus photo to be used in this study.

FUNDING

This research was funded by support from the Iran National Science Foundation (grant no. 96000798).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

REFERENCES

  1. 1.
    Anderson, S., Bankier, A.T., Barrell, B.G., De Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J., Staden, R., and Young, I.G., Sequence and organization of the human mitochondrial genome, Nature, 1981, vol. 290, pp. 457–465.CrossRefGoogle Scholar
  2. 2.
    Angeletti, D., Cimmaruta, R., and Nascetti, G., Genetic diversity of the killifish Aphanius fasciatus paralleling the environmental changes of Tarquinia salterns habitat, Genetica, 2010, vol. 138, nos. 9–10, pp. 1011–1021.  https://doi.org/10.1007/s10709-010-9487-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Avise, J.C., Molecular Markers, Natural History and Evolution, Boston: Springer-Verlag, 1994.CrossRefGoogle Scholar
  4. 4.
    Boore, J.L., Animal mitochondrial genomes, Nucleic Acids. Res., 1999, vol. 27, no. 8, pp. 1767–1780.CrossRefGoogle Scholar
  5. 5.
    Coad, B.W., Distribution of Aphanius species in Iran, J. Am. Killifish Assoc., 2000, vol. 33, no. 6, pp. 183–191.Google Scholar
  6. 6.
    Coad, B.W., A new species of tooth-carp, Aphanius mesopotamicus, from Iran and Iraq (Actinopterygii, Cyprinodontidae), Zookeys, 2009, vol. 31, no. 131, pp. 149–163.  https://doi.org/10.3897/zookeys.31.131 CrossRefGoogle Scholar
  7. 7.
    Edgar, R.C., MUSCLE: a multiple sequence alignment with high accuracy and high throughput, Nucleic Acids. Res., 2004, vol. 32, no. 5, pp. 1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Esmaeili, H.R., Teimori, A., Gholami, Z., and Reichenbacher, B., Two new species of the tooth-carp Aphanius (Teleostei: Cyprinodontidae) and the evolutionary history of the Iranian inland and inland-related Aphanius species, Zootaxa, 2014, vol. 3786, no. 3, pp. 246–268.  https://doi.org/10.11646/zootaxa.3786.3.2 CrossRefPubMedGoogle Scholar
  9. 9.
    Esmaeili, H.R., Masoudi, M., Ebrahimi, M., and Elmi, A., Review of Aphanius farsicus: a critically endangered species (Teleostei: Cyprinodontidae) in Iran, Iran. J. Ichthyol., 2016, vol. 3, no. 1, pp. 1–18.  https://doi.org/10.7508/iji.2016.01.001 CrossRefGoogle Scholar
  10. 10.
    Ferrito, V., Mannino, M.C., Pappalardo, A.M., and Tigano, C., Morphological variation among populations of Aphanius fasciatus Nardo, 1827 (Teleostei, Cyprinodontidae) from the Mediterranean, J. Fish. Biol., 2007, vol. 70, no. 1, pp. 1–20.  https://doi.org/10.1111/j.1095-8649.2006.01192.x CrossRefGoogle Scholar
  11. 11.
    Freyhof, J., Ozulug, M., and Sac, G., Neotype designation of Aphanius iconii, first reviser action to stabilize the usage of A. fontinalis and A. meridionalis and comments on the family group names of fishes placed in Cyprinodontidae (Teleostei: Cyprinodontiformes), Zootaxa, 2017, vol. 4294, no. 5, pp. 573–585.  https://doi.org/10.11646/zootaxa.4294.5.6 CrossRefGoogle Scholar
  12. 12.
    Gholami, Z., Esmaeili, H.R., Erpenbeck, D., and Reichenbacher, B., Phylogenetic analysis of Aphanius from the endorheic Kor River Basin in the Zagros Mountains, Southwestern Iran (Teleostei: Cyprinodontiformes: Cyprinodontidae), J. Zool. Syst. Evol. Res., 2014, vol. 52, no. 2, pp. 130–141.  https://doi.org/10.1111/jzs.12052 CrossRefGoogle Scholar
  13. 13.
    Gouy, M., Guindon, S., and Gascuel, O., SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building, Mol. Biol. Evol., 2010, vol. 27, no. 2, pp. 221–224.CrossRefGoogle Scholar
  14. 14.
    Helmstetter, A.J., Papadopulos, A.S.T., Igea, J., van Dooren, T.J.M., Leroi, A.M., and Savolainen, V., Viviparity stimulates diversification in an order of fish, Nat. Commun., 2016, vol. 7, no. 11271, pp. 1–7.  https://doi.org/10.1038/ncomms11271 CrossRefGoogle Scholar
  15. 15.
    Hrbek, T. and Meyer, A., Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae), J. Evol. Biol., 2003, vol. 16, no. 1, pp. 17–36.  https://doi.org/10.1046/j.1420-9101.2003.00475.x CrossRefPubMedGoogle Scholar
  16. 16.
    Hrbek, T., Keivany, Y., and Coad, B.W., New species of Aphanius (Teleostei, Cyprinodontidae) from Isfahan Province of Iran and a reanalysis of other Iranian species, Copeia, 2006, vol. 2006, no. 2, pp. 244–255.  https://doi.org/10.1643/0045-8511(2006)6[244:NSOATC]2.0.CO;2 CrossRefGoogle Scholar
  17. 17.
    Jondeung, A. and Karinthanyakit, W., Mitochondrial DNA control region of three mackerels, genus Rastrelliger: structure, molecular diversity and phylogenetic relationship, Mitochondrial DNA, Part A, 2015, vol. 27, no. 4, pp. 1–6.  https://doi.org/10.3109/19401736.2015.1028047 CrossRefGoogle Scholar
  18. 18.
    Kim, Y., Kweon, H., Kim, I., Lee, Y., Kim, J., and Lee, J., The complete mitochondrial genome of the floating goby, Gymnogobius petschiliensis (Perciformes, Gobiidae), Mol. Cells, 2004, vol. 17, no. 3, pp. 446–453.PubMedGoogle Scholar
  19. 19.
    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A., Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data, Bioinformatics, 2012, 28, no. 12, pp. 1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Keepers, K., Martin, A.P., and Kane, N.C., The complete mitochondrial genome of the Warm Springs pupfish, Cyprinodon nevadensis pectoralis, Mitochondrial DNA, Part A, 2016, vol. 27, no. 4, pp. 2349–2350.  https://doi.org/10.3109/19401736.2015.1025259 CrossRefGoogle Scholar
  21. 21.
    Lema, S.C., Wilson, K.P., Senger, B.L., and Simons, L.H., Sequencing and characterization of the complete mitochondrial genome of the endangered Devils Hole pupfish Cyprinodon diabolis (Cyprinodontiformes: Cyprinodontidae), Mitochondrial DNA, Part B, 2016, vol. 1, no. 1, pp. 705–707.CrossRefGoogle Scholar
  22. 22.
    Lowe, T.M. and Chan, P.P., tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes, Nucleic Acids Res., 2016, vol. 44, no. 1, pp. 54–57.  https://doi.org/10.1093/nar/gkw413 CrossRefGoogle Scholar
  23. 23.
    Miya, M. and Nishida, M., Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes, Mar. Biotechnol., 1999, vol. 1, no. 5, pp. 416–426.  https://doi.org/10.1007/PL00011798 CrossRefPubMedGoogle Scholar
  24. 24.
    Miya, M. and Nishida, M., Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion, Mol. Phylogenet. Evol., 2000, vol. 17, no. 3, pp. 437–455.  https://doi.org/10.1006/mpev.2000.0839 CrossRefPubMedGoogle Scholar
  25. 25.
    Miya, M., Kawaguchi, A., and Nishida, M., Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences, Mol. Biol. Evol., 2001, vol. 18, no. 11, pp. 1993–2009.  https://doi.org/10.1093/oxfordjournals.molbev.a003741 CrossRefPubMedGoogle Scholar
  26. 26.
    Nelson, J.S., Grande, T.C., and Wilson, M.V.H., Fishes of the World, Hoboken, NJ: Wiley, 2016.CrossRefGoogle Scholar
  27. 27.
    Parenti, L.R., A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei, Atherinomorpha), Bull. Am. Mus. Nat. Hist., 1981, vol. 168, pp. 335–557.Google Scholar
  28. 28.
    Pohl, M., Milvertz, F.C., Meyer, A., and Vences, M., Multigene phylogeny of cyprinodontiform fishes suggests continental radiations and a rogue taxon position of Pantanodon, Vertebr. Zool., 2015, vol. 65, no. 1, pp. 37–44.Google Scholar
  29. 29.
    Posada, D., jModelTest: Phylogenetic model averaging, Mol. Biol. Evol., 2008, vol. 25, no. 7, pp. 1253–1256.  https://doi.org/10.1093/molbev/msn083 CrossRefPubMedGoogle Scholar
  30. 30.
    Quezada-Romegialli, C., Guerrero, C.J., Véliz, D., and Vila, I., The complete mitochondrial genome of the endemic and threatened killifish Orestias ascotanensis Parenti, 1984 (Cyprinodontiformes, Cyprinodontidae) from the High Andes, Mitochondrial DNA, Part A, 2016, vol. 27, no. 4, pp. 2798–2799.  https://doi.org/10.3109/19401736.2015.1053072 CrossRefGoogle Scholar
  31. 31.
    Reznick, D.N., Furness, A.I., Meredith, R.W., and Springer, M.S., The origin and biogeographic diversification of fishes in the family Poeciliidae, PLoS One, 2017, vol. 12, no. 3, p. e0172546.  https://doi.org/10.1371/journal.pone.0172546 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Salimi, E., Zolgharnine, H., Archangi, B., Ronagh, M.T., and Ghasemi, S.A., Genetics diversity of Aphanius ginaonis and Aphanius dispar in Hormozgan and Bushehr coastal zones respectively using PCRRFLP molecular marker, J. Mar. Sci. Technol., 2018, vol. 17, no. 1, pp. 221–224.Google Scholar
  33. 33.
    Sbisa, E., Tanzariello, F., Reyes, A., Pesole, G., and Saccone, C., Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications, Gene,1997, vol. 205, nos. 1–2, pp. 125–140.  https://doi.org/10.1016/S0378-1119(97)00404-6 CrossRefPubMedGoogle Scholar
  34. 34.
    Setiamarga, D.H.E., Miya, M., Yamanoue, Y., Mabuchi, K., Satoh, T.P., Inoue, J.G., and Nishida, M., Interrelationships of Atherinomorpha (medakas, flyingfishes, killifishes, silversides, and their relatives): the first evidence based on whole mitogenome sequences, Mol. Phylogenet. Evol., 2008, vol. 49, no. 2, pp. 598–605.  https://doi.org/10.1016/j.ympev.2008.08.008 CrossRefPubMedGoogle Scholar
  35. 35.
    Stamatakis, A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, 2006, vol. 22, no. 21, pp. 2688–2690.  https://doi.org/10.1093/bioinformatics/btl446 CrossRefGoogle Scholar
  36. 36.
    Teimori, A., The evolutionary history and taxonomy of Aphanius (Teleostei: Cyprinodontidae) species in Iran and the Persian Gulf region, PhD Thesis, Munich: Ludwig-Maximilians Univ., 2013.Google Scholar
  37. 37.
    Teimori, A., Esmaeili, H.R., and Reichenbacher, B., Aphanius farsicus, a replacement name for A. persicus (Jenkins, 1910) (Teleostei, Cyprinodontidae), Zootaxa 2011, vol. 3096, pp. 53–58.  https://doi.org/10.11646/zootaxa.3096.1.5 CrossRefGoogle Scholar
  38. 38.
    Teimori, A., Esmaeili, H.R., Gholami, Z., Zarei, N., and Reichenbacher, B., Aphanius arakensis, a new species of tooth-carp (Actinopterygii, Cyprinodontidae) from the endorheic Namak Lake basin in Iran, Zookeys, 2012, vol. 215, no. 1731, pp. 55–76.  https://doi.org/10.3897/zookeys.215.1731
  39. 39.
    Teimori, A., Esmaeili, H.R., Erpenbeck, D., and Reichenbacher, B., A new and unique species of the genus Aphanius (Teleostei: Cyprinodontidae) from Southern Iran: a case of regressive evolution, Zool. Anz., 2014, vol. 253, no. 4, pp. 327–337.  https://doi.org/10.1016/j.jcz.2013.12.001 CrossRefGoogle Scholar
  40. 40.
    Teimori, A., Mostafavi, H., and Esmaeili, H.R., An update note on diversity and conservation of the endemic fishes in Iranian inland waters, Turk. J. Zool., 2016, vol. 40, no. 1, pp. 87–102.  https://doi.org/10.3906/zoo-1407-2 CrossRefGoogle Scholar
  41. 41.
    Teimori, A, Esmaeili, H.R., Hamidan, N., and Reichenbacher, B., Systematics and historical biogeography of the Aphanius dispar species group (Teleostei: Aphaniidae) and description of a new species from Southern Iran, J. Zool. Syst. Evol. Res., 2018, vol. 56, no. 4, pp. 579–598.  https://doi.org/10.1111/jzs.12228 CrossRefGoogle Scholar
  42. 42.
    van der Laan, R., and Fricke, R., Family-group names, 2018, Version 12/2018. http://www.calacademy.org/scientists/catalog-of-fishes-family-group-names/.Google Scholar
  43. 43.
    Villwock, W., A contribution to the understanding of the evolution of meristic characters, with special reference to Old World Cyprinodontids (Pisces, Cyprinodontidae), Abh. Ver. Naturwiss. Ver. Hamb, 1976, vol. 18–19, pp. 11–27.Google Scholar
  44. 44.
    Wildekamp, R.H., A World of Killies: Atlas of the Oviparous Cyprinodontiform Fishes of the World, Houston: Am. Killifish Assoc., 1993.Google Scholar
  45. 45.
    Xu, L., Wang, X., Li, H., and Du, F., The complete mitochondrial genome of Perciformes fish (Brama dussumieri) from South China Sea, Mitochondrial DNA, Part B, 2018, vol. 3, no. 2, pp. 874–875.  https://doi.org/10.3390/ijms19061741 CrossRefGoogle Scholar
  46. 46.
    Yaripour, S., Esmaeili, H.R., Gholamhosseini, A., Rezaei, M., and Sadeghi, S., Assessment of genetic diversity of an endangered tooth-carp, Aphanius farsicus (Teleostei: Cyprinodontiformes: Cyprinodontidae) using microsatellite markers, Mol. Biol. Res. Commun., 2017, vol. 6, no. 4, pp. 153–160.  https://doi.org/10.22099/MBRC.2017.24404.1246 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang, X.Y., Yue, B.S., Jiang, W.X., and Song, Z., The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications, Mol. Biol. Rep., 2009, vol. 36, no. 981, pp. 981–991.  https://doi.org/10.1007/s11033-008-9271-y CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Sciences, Shahid Bahonar University of KermanKermanIran

Personalised recommendations