Journal of Ichthyology

, Volume 59, Issue 5, pp 766–775 | Cite as

Early Ontogeny of the Climbing Perch Anabas testudineus (Anabantidae) in Relation to the Buoyancy Dynamics

  • K. F. DzerzhinskiyEmail author
  • D. D. Zworykin
  • S. V. Budaev


This article describes early development of the climbing perch Anabas testudineus in relation to its buoyancy dynamics. Main patterns of the ontogeny during the first 140 h of development are described. The climbing perch is characterized by positive buoyancy of eggs and early larvae not usually found in other freshwater fish. This allows the fish development close to the surface of the water and is enabled by a large oil globule in the yolk. The data on the spatial orientation of the larva body, their vertical distribution in the water column, the beginning of exogenous feeding and locomotion, and the fright reaction of the larvae at different ages are presented. The most significant changes in the behavior of the climbing perch larvae are associated with changing the shape of the yolk sac, beginning to function as a provisional hydrostatic organ from about the 80s hour of development.


climbing perch Anabas testudineus pelagic eggs larvae buoyancy dynamics larval behavior fright startle reaction dispersed systems fresh water 



We are grateful to Đinh Thị Hải Yến and Võ Thị Hà (Coastal Branch of Vietnam–Russian Tropical Center) for their help in work organizing and implementation.


The study was performed in the framework of the “Ecolan E-3.2” topic, “Reproduction, Reproductive and Feeding Behavior of Anabantid Fishes” section of the Tropical Research and Technological Center.


  1. 1.
    Alexander, R.McN., The structure of the Weberian apparatus in the Siluri, Proc. Zool. Soc. London, 1964, vol. 142, pp. 419–440.CrossRefGoogle Scholar
  2. 2.
    Amornsakun, T., Sriwatana, W., and Promkaew, P., Some aspects in early life stage of Siamese gourami, Trichogaster pectoralis (Regan) larvae, Songklanakarin J. Sci. Technol., 2004, vol. 26, no. 3, pp. 347–356.Google Scholar
  3. 3.
    Amornsakun, T., Sriwatana, W., and Promkaew, P., Some aspects in early life stage of climbing perch, Anabas testudineus larvae, Songklanakarin J. Sci. Technol., 2005, vol. 27, no. 1, pp. 403–418.Google Scholar
  4. 4.
    Amornsakun, T., Kullai, S., and Hassan, A., Some aspects in early life stage of giant gourami, Osphronemus gouramy (Lacepede) larvae, Songklanakarin J. Sci. Technol., 2014, vol. 36, no. 5, pp. 493–498.Google Scholar
  5. 5.
    Battle, H.I. and Sprules, W.M., A description of the semi-buoyant eggs and early developmental stages of the goldeye, Hiodon alosoides (Rafinesque), J. Fish. Res. Board Can., 1960, vol. 17, no. 2, pp. 245–266.CrossRefGoogle Scholar
  6. 6.
    Betancur-R, R., Wiley, E., Bailly, N., et al., Phylogenetic classification of bony fishes, BMC Evol. Biol., 2017, vol. 17, p. e162. CrossRefGoogle Scholar
  7. 7.
    Bhimachar, B.S., David, A., and Muniappa, B., Observations on the acclimatization, nesting habits and early development of Osphronemus goramy (Lacépède), Proc. Indian Acad. Sci., 1944, vol. 20, no. 3, pp. 88–101.Google Scholar
  8. 8.
    Britz, R., Egg surface structure and larval cement glands in nandid and badid fishes (Teleostei, Percomorpha), with remarks on phylogeny and zoogeography, Am. Mus. Novit., 1997, no. 3195, pp. 1–17.Google Scholar
  9. 9.
    Chalde, T., Elisio, M., and Miranda, L.A., Quality of pejerrey (Odontesthes bonariensis) eggs and larvae in captivity throughout spawning season, Neotrop. Ichthyol., 2014, vol. 12, no. 3, pp. 629–634.CrossRefGoogle Scholar
  10. 10.
    Chatain, B., La vessie natatoire chez Dicentrarchus labrax et Sparus auratus, Aquaculture, 1986, vol. 53, nos. 3–4, pp. 303–311.CrossRefGoogle Scholar
  11. 11.
    Chernyaev, Zh.A., Vertical chamber for observation of egg development of salmon fishes, Vopr. Ikhtiol., 1962, vol. 2, no. 3, pp. 457–462.Google Scholar
  12. 12.
    Craik, J.C.A. and Harvey, S.M., The causes of buoyancy in eggs of marine teleosts, J. Mar. Biol. Assoc. U.K., 1987, vol. 67, no. 1, pp. 169–182.CrossRefGoogle Scholar
  13. 13.
    Davis, C.C., A planktonic fish egg from fresh water, Limnol. Oceanogr., 1959, vol. 4, pp. 352–355.CrossRefGoogle Scholar
  14. 14.
    De Sousa, W.T.Z. and Severi, W., Desenvolvimento larval inicial de Helostoma temminckii Cuvier & Valenciennes (Helostomatidae, Perciformes), Rev. Bras. Zool., 2000, vol. 17, no. 3, pp. 637–644.CrossRefGoogle Scholar
  15. 15.
    Dzerzhinsky, K.F., Suspended matter and hydrobiont buoyancy as exemplified by fish eggs, Dokl. Biol. Sci., 2012, vol. 443, no. 1, pp. 106–108.PubMedCrossRefGoogle Scholar
  16. 16.
    Dzerzhinskiy, K.F., Evaluation of buoyancy dynamics in the early ontogenesis of climbing perch Anabas testudineus (Anabantidae), J. Ichthyol., 2016, vol. 56, no. 1, p. 133–140.CrossRefGoogle Scholar
  17. 17.
    Dzerzhinskii, K.F. and Zworykin, D.D., Yolk sac as provisional yolk sac as a hydrostatic provisional organ of the climbing perch (Anabas testudineus), Materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii “Ekologiya, evolyutsiya i sistematika zhivotnykh” (Proc. Int. Sci.-Pract. Conf. “Ecology, Evolution, and Systematics of the Animals”), Ryazan: Golos Gubernii, 2012, pp. 245–246.Google Scholar
  18. 18.
    Gee, J.H., Buoyancy and aerial respiration: factors influencing the evolution of reduced swim-bladder volume of some Central American catfishes (Trichomycteridae, Callichthyidae, Loricariidae, Astroblepidae), Can. J. Zool., 1976, vol. 54, pp. 1030–1037.PubMedCrossRefGoogle Scholar
  19. 19.
    Gee, J.H. and Gee, P.A., Aquatic surface respiration, buoyancy control and the evolution of air-breathing in gobies (Gobiidae: Pisces), J. Exp. Biol., 1995, vol. 198, pp. 79–89.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hale, M.E., Long, J.H., McHenry, M.J., and Westneat, M.W., Evolution of behavior and neural control of the fast-start escape response, Evolution, 2002, vol. 56, no. 5, pp. 993–1007.PubMedCrossRefGoogle Scholar
  21. 21.
    Hamm, J.T. and Hinton, D.E., The role of development and duration of exposure to the embryotoxicity of diazinon, Aquat. Toxicol., 2000, vol. 48, no. 4, pp. 403–418.PubMedCrossRefGoogle Scholar
  22. 22.
    Hasan, R.N., Hydrostatic significance of accessory respiratory organs in some air-breathing fishes, Copeia, 1966, no. 1, pp. 136–139.Google Scholar
  23. 23.
    Hodges, W. and Behre, E., Breeding behavior, early embryology, and melanophore development in the anabantid fish, Trichogaster trichopterus, Copeia, 1953, no. 2, pp. 100–107.Google Scholar
  24. 24.
    Hollander, M. and Wolfe, D.A., Nonparametric Statistical Methods, New York: Wiley, 1999.Google Scholar
  25. 25.
    Hopson, A.J., A description of the pelagic embryos and larval stages of Lates niloticus (L.) (Pisces: Centropomidae) from Lake Chad, with a review of early development in lower percoid fishes, Zool. J. Linn. Soc., 1969, vol. 48, no. 1, pp. 117–134.CrossRefGoogle Scholar
  26. 26.
    Islam, S., Ray, L.R., Boidya, P., et al., Embryonic development of banded gourami, Colisa fasciata in captive condition, J. Entomol. Zool. Stud., 2017, vol. 5, no. 6, pp. 420–425.Google Scholar
  27. 27.
    Kimmel, C.B., Patterson, J., and Kimmel, R.O., The development and behavioral characteristics of the startle response in the zebra fish, Dev. Psychobiol., 1974, vol. 7, no. 1, pp. 47–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Kjesbu, O.S., Kryvi, H., Sundby, S., and Solemdal, P., Buoyancy variations in eggs of Atlantic cod (Gadus morhua L.) in relation to chorion thickness and egg size: theory and observations, J. Fish Biol., 1992, vol. 41, no. 4, pp. 581–599.CrossRefGoogle Scholar
  29. 29.
    Li, G., Muller, U.K., van Leeuwen, J.L., and Liu, H., Escape trajectories are deflected when fish larvae intercept their own C-start wake, J. R. Soc. Interface, 2014, vol. 11, no. 101.
  30. 30.
    Lindsey, B.W., Smith, F.M., and Croll, R.P., From inflation to flotation: contribution of the swimbladder to whole-body density and swimming depth during development of the zebrafish (Danio rerio), Zebrafish, 2010, vol. 7, no. 1, pp. 85–96.PubMedCrossRefGoogle Scholar
  31. 31.
    Makeeva, A.P. and Pavlov, D.S., Morphological characteristics and general features for determination of eggs of Russian pelagic freshwater fishes, Vopr. Ikhtiol., 2000, vol. 40, no. 6, pp. 780–791.Google Scholar
  32. 32.
    Makeeva, A.P., Pavlov, D.S., and Pavlov, D.A., Atlas molodi presnovodnykh ryb Rossii (Atlas of Freshwater Fish Juveniles of Russia), Moscow: KMK, 2011.Google Scholar
  33. 33.
    Mellinger, J., La flottabilite des fufs de téléostéens, Ann. Biol., 1994, vol. 33, no. 3, pp. 117–138.Google Scholar
  34. 34.
    Moitra, A., Ghosh, T.K., Pandey, A., and Munshi, J.S.D., Scanning electron microscopy of the post-embryonic stages of the climbing perch, Anabas testudineus, Jpn. J. Ichthyol., 1987, vol. 34, no. 1, pp. 53–58.CrossRefGoogle Scholar
  35. 35.
    Morioka, S., Ito, S., Kitamura, S., and Vongvichith, B., Growth and morphological development of laboratory-reared larval and juvenile climbing perch Anabas testudineus, Ichthyol. Res., 2009, vol. 56, no. 2, pp. 162–171.CrossRefGoogle Scholar
  36. 36.
    Morioka, S., Chanthasone, P., Phommachan, P., and Vongvichith, B., Growth and morphological development of laboratory-reared larval and juvenile three-spot gourami Trichogaster trichopterus, Ichthyol. Res., 2012, vol. 59, no. 1, pp. 53–62.CrossRefGoogle Scholar
  37. 37.
    Nissling, A., Kryvi, H., and Vallin, L., Variation in egg buoyancy of Baltic cod (Gadus morhua) and its implications for egg survival in prevailing conditions in the Baltic Sea, Mar. Ecol.: Prog. Ser., 1994, vol. 110, pp. 67–74.CrossRefGoogle Scholar
  38. 38.
    Noakes, D.L.G. and Godin, J.-G.J., Ontogeny of behavior and concurrent developmental changes in sensory systems in teleost fishes, Fish Physiol., 1988, vol. 11, part B, pp. 345–395.Google Scholar
  39. 39.
    Palińska-Żarska, K., Żarski, D., Krejszeff, S., et al., Dynamics of yolk sac and oil droplet utilization and behavioral aspects of swim bladder inflation in burbot, Lota lota L., larvae during the first days of life, under laboratory conditions, Aquacult. Int., 2014, vol. 22, no. 1, pp. 13–27.CrossRefGoogle Scholar
  40. 40.
    Power, J.H., Morriwson, W.L., and Zeringue, J., Determining the mass, volume, density, and weight in water of small zooplankters, Mar. Biol., 1991, vol. 110, pp. 267–271.CrossRefGoogle Scholar
  41. 41.
    Qasim, S.Z. and Hasan, R.A., Hydrostatic function of the accessory respiratory organs in air-breathing fishes, Nature, 1961, vol. 191, pp. 396–397.PubMedCrossRefGoogle Scholar
  42. 42.
    Roberts, A.C., Reichl, J., Song, M.Y., et al., Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade, PLoS One, 2011, vol. 6, no. 12, p. e29132. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roberts, A.C., Pearce, K.C., Choe, R.C., et al., Long-term habituation of the C-start escape response in zebrafish larvae, Neurobiol. Learn. Mem., 2016, vol. 134, no. 3, pp. 360–368.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ruggiero, M.A., Gordon, D.P., Orrell, T.M., et al., A higher level classification of all living organisms, PloS One, 2015, vol. 10, no. 4, p. e0119248. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rüber, L., Britz, R., and Zardoya, R., Molecular phylogenetics and evolutionary diversification of labyrinth fishes (Perciformes: Anabantoidei), Syst. Biol., 2006, vol. 55, no. 3, pp. 374–397.PubMedCrossRefGoogle Scholar
  46. 46.
    Saha, S., Behera, S., Bhakta, D., and Mandal, A., Breeding and embryonic development of an indigenous ornamental fish Trichogaster lalius (Hamilton, 1822) in captive condition, J. Entomol. Zool. Stud., 2017, vol. 5, no. 3, pp. 111–115.Google Scholar
  47. 47.
    Sarkar, S., Rai, B.K., Bhutia, D., et al., Study on the breeding performance and developmental stages of climbing perch, Anabas testudineus (Bloch, 1792) in the laboratory (Siliguri, India), Int. J. Fish. Aquat. Stud., 2015, vol. 2, no. 6, pp. 198–201.Google Scholar
  48. 48.
    Schmidt-Nielsen, K., Animal Physiology: Adaptation and Environment, Cambridge: Cambridge Univ. Press, 1979.Google Scholar
  49. 49.
    Soin, S.G., Prisposobitel’nye osobennosti razvitiya ryb (Adaptive Features of Fish Development), Moscow: Mosk. Gos. Univ., 1968.Google Scholar
  50. 50.
    Soin, S.G., Avni, A.A., and Dorbachev, V.P., Adaptive features of development of climbing perches (Anabantidae), Vopr. Ikhtiol., 1973, vol. 13, no. 6 (83), pp. 1056–1064.Google Scholar
  51. 51.
    Steen, J.B., The swim bladder as a hydrostatic organ, in Fish Physiology, Hoar, W.S. and Randall, D.J., Eds., New York: Academic, 1970, vol. 4, pp. 413–443.Google Scholar
  52. 52.
    Summerfelt, R.C., Intensive culture of walleye fry, in Walleye Culture Manual, NCRAC Culture Serires vol. 101, Summerfelt, R.C., Ed., Ames: Iowa State Univ., 1996, pp. 161–185.Google Scholar
  53. 53.
    The Physiology of Fishes, Evans, D.H., Ed., Boca Raton, FL: CRC Press, 1998.Google Scholar
  54. 54.
    Trotter, A.J., Pankhurst, P.M., and Battaglene, S.C., A finite interval of initial swimbladder inflation in Latris lineata revealed by sequential removal of water-surface films, J. Fish Biol., 2005, vol. 67, no. 3, pp. 730–741.CrossRefGoogle Scholar
  55. 55.
    Villalobos, S.A., Hamm, J.T., Teh, S.J., and Hinton, D.E., Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes): stage-specific toxicity and the protective role of chorion, Aquat. Toxicol., 2000, vol. 48, pp. 309–326.PubMedCrossRefGoogle Scholar
  56. 56.
    Witt, W.C., Wen, L., and Lauder, G.V., Hydrodynamics of C-start escape responses of fish as studied with simple physical models, Integr. Comp. Biol., 2015, vol. 55, no. 4, pp. 728–739.PubMedCrossRefGoogle Scholar
  57. 57.
    Zalina, I., Saad, C.R., Christianus, A., and Harmin, S.A., Induced breeding and embryonic development of climbing perch (Anabas testudineus, Bloch), J. Fish. Aquat. Sci., 2012, vol. 7, no. 5, pp. 291–306.CrossRefGoogle Scholar
  58. 58.
    Zotin, A.I., Fiziologiya vodnogo obmena u zarodyshei ryb i kruglorotykh (Physiology of Water Exchange in Fish Embryos and Cyclostomata), Moscow: Akad. Nauk SSSR, 1961.Google Scholar
  59. 59.
    Zworykin, D.D., Reproduction and spawning behavior of the climbing perch Anabas testudineus (Perciformes, Anabantidae) in an aquarium, J. Ichthyol., 2012, vol. 52, no. 6, pp. 379–388.CrossRefGoogle Scholar
  60. 60.
    Zworykin, D.D., Phylogenesis of reproductive strategies in labyrinth fishes (Anabantoidei) and their sister groups, Biol. Bull. Rev., 2017, vol. 7, no. 5, p. 428–441.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. F. Dzerzhinskiy
    • 1
    Email author
  • D. D. Zworykin
    • 1
  • S. V. Budaev
    • 2
  1. 1.Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
  2. 2.University of BergenBergenNorway

Personalised recommendations