Advertisement

Journal of Ichthyology

, Volume 58, Issue 6, pp 916–926 | Cite as

Rapid Gustatory Food Evaluation in Fish

  • A. O. KasumyanEmail author
  • E. S. Mikhailova
Article
  • 8 Downloads

Abstract

Fish have a well-developed sense of taste and can evaluate the palatability of grasped food and reject it if food do not match an expected quality. In the present study the food retention time was measured in Eurasian minnow Phoxinus phoxinus for agar pellets flavoured with amino acids (L-alanine, L-proline, L-phenylalanine; 0.1 M) by analysing video recordings. About 50% of the pellets were rejected within less than 145 ms. The shortest periods for pellet retention were within 42 ms. The mean values vary between 260 and 370 ms for pellets flavoured with amino acids but no significant difference was found between rejection time for pellets with palatable alanine, aversive phenylalanine and ineffective proline. It means that rejection time is not related to the palatability of grasped food item and indicates that there is a short-cut in the neurophysiological pathways that makes the fish reject the grasped food items with minimum delay. The fast rejection helps fish to decrease time for unproductive efforts and increase the possibilities to find valuable food after new search.

Keywords:

feeding behavior taste gustatory system palatability food evaluation retention time taste reflex 

REFERENCES

  1. 1.
    Atema, J., Chemical senses, chemical signals and feeding behavior in fish, in Fish Behavior and its Use in the Capture and Culture of Fishes, Bardach, J.E., Eds., Manila: Int. Center Living Aquat. Resour. Manage., 1980, pp. 57–101.Google Scholar
  2. 2.
    Bemis, W.E., Findeis, E.K., and Grande, L., An overview of Acipenseriformes, Environ. Biol. Fish., 1997, vol. 48, pp. 25–41.CrossRefGoogle Scholar
  3. 3.
    Breslin, P.A. and Huang, L., Human taste: peripheral anatomy, taste transduction, and coding, Adv. Otorhinolaryngol., 2006, vol. 63, pp.152–190.Google Scholar
  4. 4.
    Coughlin, D.J. and Strickler, J.R., Zooplankton capture by a coral reef fish: an adaptive response to evasive prey, Environ. Biol. Fish., 1990, vol. 29, pp. 35–42.CrossRefGoogle Scholar
  5. 5.
    Essler, H. and Kotrschal, K., High resolution analysis of swim path patterns of intact and olfaction-deprived minnows (Phoxinus phoxinus) stimulated with food and potential predator odour, J. Fish Biol., 1994, vol. 45, pp. 555–567.CrossRefGoogle Scholar
  6. 6.
    Fehrer, J.R. and Raab, D., Reaction time to stimuli masked by metacontrast, in Information-Processing Approaches to Visual Perception, Haber, R.N., Eds., New York: Holt, Rinehart and Winston, 1969, pp. 117–121.Google Scholar
  7. 7.
    Finger, T.E., Feeding patterns and brain evolution in ostariophysean fishes, Acta Physiol. Scand., 1997, vol. 161, suppl. 638, pp. 59–66.Google Scholar
  8. 8.
    Frisch von, K., Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung, Z. Vergl. Physiol., 1941, vol. 29, no. 1, pp. 46–145.Google Scholar
  9. 9.
    Glaser, D., Zum Verhalten blinder Fische, Z. Tierpsychol., 1968, vol. 25, no. 6, pp. 648–658.Google Scholar
  10. 10.
    Halpern, B.P., Constraints imposed on taste physiology by human taste reaction time data, Neurosci. Biobehav. Rev., 1986, vol. 10, no. 2, pp. 135–151.CrossRefGoogle Scholar
  11. 11.
    Halpern, B.P. and Tapper, D.N., Taste stimuli: quality coding time, Science, 1971, vol. 171, pp. 1256–1258.CrossRefGoogle Scholar
  12. 12.
    Kasumyan, A.O., Gustatory reception and feeding behavior in fish, J. Ichthyol., 1997, vol. 37, no. 1, pp. 72–86.Google Scholar
  13. 13.
    Kasumyan, A.O. and Marusov, E.A., Behavioral responses of intact and long-time olfactory deprived European minnows, Phoxinus phoxinus (Cyprinidae), to free amino acids, J. Ichthyol., 2003, vol. 43, no. 7, pp. 528–538.Google Scholar
  14. 14.
    Kasumyan, A.O. and Mikhailova E.S., Taste preferences and feeding behavior of three-spined stickleback Gasterosteus aculeatus of populations of basins of the Atlantic and Pacific oceans, J. Ichthyol., 2014, vol. 54, no. 7, pp. 453–475.CrossRefGoogle Scholar
  15. 15.
    Kasumyan, A.O. and Prokopova, O.M., Taste preferences and the dynamics of behavioral taste response in the tench Tinca tinca (Cyprinidae), J. Ichthyol., 2001, vol. 41, no. 8. pp. 640–653.Google Scholar
  16. 16.
    Kasumyan, A.O. and Sidorov, S.S., Individual variability of taste preferences in the minnow Phoxinus phoxinus, J. Ichthyol., 2002, vol. 42, suppl. 2, pp. 241–254.Google Scholar
  17. 17.
    Kasumyan, A.O. and Sidorov, S.S., Taste preferences of the brown trout Salmo trutta from three geographically isolated populations, J. Ichthyol., 2005, vol. 45, no. 7, pp. 111–123.Google Scholar
  18. 18.
    Kasumyan, A.O. and Sidorov, S.S., Behavior of food objects testing by taste in the carp Cyprinus carpio in the norm and at chronic anosmia, J. Ichthyol., 2010, vol. 50, no. 11, pp. 1043–1059.CrossRefGoogle Scholar
  19. 19.
    Kasumyan, A.O. and Sidorov, S.S., Effects of the long term anosmia combined with vision deprivation on the taste sensitivity and feeding behavior of the rainbow trout Parasalmo (=Oncorhynchus) mykiss, J. Ichthyol., 2012, vol. 52, no. 1, pp. 109–119.CrossRefGoogle Scholar
  20. 20.
    Kelling, S.N. and Halpern, B.P., Taste judgments and gustatory stimulus duration: simple taste reaction times, Chem. Sens., 1987, vol. 12, no. 4, pp. 543–562.CrossRefGoogle Scholar
  21. 21.
    Koch, C., The movie in your head, Sci. Am. Mind., 2005, vol. 16, pp. 58–63.CrossRefGoogle Scholar
  22. 22.
    Krause, J. and Ruxton, G.D., Living in Groups, Oxford: Oxford Univ. Press, 2002.Google Scholar
  23. 23.
    Magurran, A.E., The development of shoaling behavior in the European minnow, Phoxinus phoxinus, J. Fish Biol., 1986, vol. 29, suppl. A, pp. 159–169.Google Scholar
  24. 24.
    Magurran, A.E., Acquired recognition of predator odor in the European minnow (Phoxinus phoxinus), Ethology, 1989, vol. 82, pp. 216–223.CrossRefGoogle Scholar
  25. 25.
    Magurran, A.E. and Pitcher, T.J., Foraging, timidity and shoal size in minnows and goldfish, Behav. Ecol. Sociobiol., 1983, vol. 12, no. 2, pp. 147–152.CrossRefGoogle Scholar
  26. 26.
    Magurran, A.E., Oulton, W., and Pitcher, T.J., Vigilant behaviour and shoal size in minnows, Z. Tierpsychol. Bd., 1985, vol. 67, pp. 167–178.CrossRefGoogle Scholar
  27. 27.
    Mikhailova, E.S. and Kasumyan, A.O., Taste preferences and feeding behavior in nine-spined stickleback (Pungitius pungitius) in three geographically distant populations, J. Ichthyol., 2015, vol. 55, no. 5, pp. 679–701.CrossRefGoogle Scholar
  28. 28.
    Mikhailova, E.S. and Kasumyan, A.O., Orosensory food testing in fish: chronology of behavior, Biol. Bull., 2016, vol. 43, no. 4, pp. 318–328.CrossRefGoogle Scholar
  29. 29.
    Nyberg, D.W., Prey capture in the largemouth bass, Am. Midl. Nat., 1971, vol. 86, no. 1, pp. 128–144.CrossRefGoogle Scholar
  30. 30.
    Pavlov, D.S. and Kasumyan, A.O., The structure of the feeding behavior of fishes, J. Ichthyol., 1998, vol. 38, no. 1, pp. 116–128.Google Scholar
  31. 31.
    Sasko, D.E., Dean, M.N., Motta, P.J., and Hueter, R.E., Prey capture behavior and kinematics of the Atlantic cownose ray, Rhinoptera bonasus, Zoology, 2006, vol. 109, pp. 171–181.CrossRefGoogle Scholar
  32. 32.
    Schlegel, T. and Schuster, S., Small circuits for large tasks: high-speed decision-making in archerfish, Science, 2008, vol. 319, no. 5859, pp. 104–106.CrossRefGoogle Scholar
  33. 33.
    Sibbing, F.A., Osse, J.W. M., and Terlouw, A., Food handling in the carp (Cyprinus carpio): its movement patterns, mechanisms and limitations, J. Zool., 1986, vol. 210, no. 2, pp. 161–203.CrossRefGoogle Scholar
  34. 34.
    Simon, S.A., de Araujo, I.E., Stapleton, J.R., and Nicolelis, M.A.L., Multisensory processing of gustatory stimuli, Chem. Percept., 2008, vol. 1, no. 1, pp. 95–102.CrossRefGoogle Scholar
  35. 35.
    Spector, A.C., Redman, R., and Garcea, M., The consequences of gustatory nerve transaction on taste-guided licking of sucrose and maltose in the rat, Behav. Neurosci., 1996, vol. 110, pp. 1096–1109.CrossRefGoogle Scholar
  36. 36.
    Stapleton, J.R., Lavine, M.L., Wolpert, W.L., Nicolelis, M.A.L., and Simon, A.S., Rapid taste responses in the gustatory cortex during licking, J. Neurosci., 2006, vol. 26, no. 15, pp. 4126–4138.CrossRefGoogle Scholar
  37. 37.
    Travers, J.B., Dinardo, L.A., and Karimnamazi, H., Motor and premotor mechanisms of licking, Neurosci. Biobehav. Rev., 1997, vol. 21, pp. 631–647.CrossRefGoogle Scholar
  38. 38.
    Uchida, N. and Mainen, Z.F., Speed and accuracy of olfactory discrimination in the rat, Nat. Neurosci., 2003, vol. 6, pp. 1224–1229.CrossRefGoogle Scholar
  39. 39.
    Vinogradskaya, M.I., Mikhailova, E.S., and Kasumyan, A.O., Taste preferences, orosensory food testing, and sound production during feeding by the pearl gourami Trichopodus leerii (Osphronemidae), J. Ichthyol., 2017, vol. 57, no. 3, pp. 445–457.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Severtsov Institute of Ecology and EvolutionMoscowRussia

Personalised recommendations