Journal of Ichthyology

, Volume 58, Issue 6, pp 932–938 | Cite as

Histopathological Changes of Hepatorenal Toxicity Induced by Gentamicin in Killifish, Aphanius hormuzensis (Aphaniidae) and its Kidney Regeneration Through Nephron Neogenesis

  • A. Iranmanesh
  • M. MotamediEmail author


The histopathological changes in liver and kidney toxicity after induction by gentamicin are studied in killifish, Aphanius hormuzensis, and its kidney regeneration through nephron neogenesis is reported for the first time. The adult fish are subjected to nephrotoxic antibiotic, gentamicin, at a sub-lethal dose (10 µg/g), and their liver and kidney tissues are sampled daily for two weeks. Liver histopathology shows that this dosage causes hepatotoxicity effect. The hepatocytes are swollen and detached from each other. Moreover, the endothelial layer of blood vessels is damaged, and the appearance of melanomacrophage centers (MMCs) increases. The renal toxicity is detected in 10 h post injection, and the damage is observed in the epithelial layer of renal tubes. Renal damage is followed by cyst formation in 5 days post injection (dpi). The nephron neogenesis sign is detected by nephrogenic body formation in 7 dpi, and tubular segments of newly formed nephron is observed in 9 dpi. Gentamicin causes hepatorenal toxicity, and the kidney regenerates through nephron neogenesis in 10 days.


Aphanius regeneration histology gentamicin kidney and liver toxicity nephron neogenesis 


  1. 1.
    Al-Kenanny, E.R., Al-Hayaly, L.K., and Al-Badrany, A.G., Protective effect of Arabic gum on liver injury experimentally induced by gentamicin in mice, J. Kufa Vet. Med. Sci., 2012, vol. 3, no. 1, pp. 174–189.Google Scholar
  2. 2.
    Augusto, J., Smith, B., Smith, S., Robertson, J., and Reimschuessel, R., Gentamicin-induced nephrotoxicity and nephroneogenesis in Oreochromis nilotica, a tilapian fish, Dis. Aquat. Org., 1996, vol. 26, no. 1, pp. 49–58.CrossRefGoogle Scholar
  3. 3.
    Azevedo, A.S., Sousa, S., and Jacinto, A., An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin, BMC Dev. Biol., 2012, vol. 12, no. 24, pp. 1–12.CrossRefGoogle Scholar
  4. 4.
    Behmer, O.A., Tolosa, E.M.C., and FreitasNeto, A.G., Manual De Técnicas Para Histologia Normal e Patológica, São Paulo: São Paulo Livraria Editora, 1976.Google Scholar
  5. 5.
    Cormier, S.M., Neiheisel, T.W., Racine, R.N., and Reimschuessel, R., New nephron development in fish from polluted waters: a possible biomarker, Ecotoxicology, 1995, vol. 4, no. 3, pp. 157–168.CrossRefGoogle Scholar
  6. 6.
    Ellet, F., and Lieschke, G.J., Zebrafish as a model for vertebrate hematopoiesis, Curr. Opin. Pharmacol., 2010, vol. 10, no. 5, pp. 1–8.CrossRefGoogle Scholar
  7. 7.
    Ellis, A.E., and De Sousa, M., Phylogeny of the lymphoid system. I. A study of the fate of circulating lymphocytes in place, Eur. J. Immunol., 1974, vol. 4, no. 5, pp. 338–43.CrossRefGoogle Scholar
  8. 8.
    Fedorova, S., Miyamoto, R., Harada, T., Isogai, S., Hashimoto, H., Ozato, K., and Wakamatsu, Y., Renal glomerulogenesis in medaka fish, Oryzias latipes, Dev. Dyn., 2008, vol. 237, no. 5, pp. 2342–2352.CrossRefGoogle Scholar
  9. 9.
    Hoppe, B., Pietsch, S., Franke, M., Engel, S., Groth, M., Platzer, M., and Englert, C., MiR-21 is required for efficient kidney regeneration in fish, BMC Dev. Biol., vol. 15, no. 43, pp. 1–10.Google Scholar
  10. 10.
    Hrbek, T., and Meyer, A., Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae), J. Evol. Biol., 2013, vol. 16, no. 1, pp. 17–36.CrossRefGoogle Scholar
  11. 11.
    Huth, M. E., Ricci, A.J., and Cheng, A.G., Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection, Int. J. Otolaryngol., 2011, vol. 90, no. 10, pp. 1–19.CrossRefGoogle Scholar
  12. 12.
    Jeffrey, W.C., Roger, G.U., Philip, G.L., and Clay, T.C., Acute hepatocellular effects of erythromycin, gentamicin, and trospectomycin in the perfused rat liver: Lack of correlation between lamellar body induction potency and cytotoxicity, Pharmacol. Toxicol.,1988, vol. 62, no. 5, pp. 337–343.CrossRefGoogle Scholar
  13. 13.
    Kamel, M.A., and Hosny Abdel Fadil, I., Prevention of hepato-renal toxicity with vitamin E, vitamin C and their combination in gentamicin treated rats, Int. J. Pharm. Sci., 2015, vol. 5, no. 5, pp. 1289–1296.Google Scholar
  14. 14.
    Kang, C., Lee, D.Y., Hah, J.H., Heo, C.H., Kim, E., and Kim, J.S., Protective effects of Houttuynia cordata Thunb. on gentamicin-induced oxidative stress and nephrotoxicity in rats, Toxicol. Res., 2013, vol. 29, no. 1, pp. 61–67.CrossRefGoogle Scholar
  15. 15.
    Kim, Y., Nam, H.G., and Valenzano, D.R., The short-lived African turquoise killifish: an emerging experimental model for ageing, Dis. Models Mech., 2016, vol. 9, no. 2, pp. 115–129.CrossRefGoogle Scholar
  16. 16.
    Kovacs, E., Savopol, T., Iordache, M.M., Saplacan, L., Sobaru, I., Istrate, C., Mingeot-Leclercq, M.P., and Moisescu, M.G., Interaction of gentamicin polycation with model and cell membranes, Bioelectrochemistry, 2012, vol. 87, no. 1, pp. 230–235.CrossRefGoogle Scholar
  17. 17.
    Kranz, H., Changes in splenic melano-macrophage centers of dab Limanda limanda during and after infection with ulcer disease, Dis. Aquat. Org., 1989, vol. 6, no. 1, pp. 167–173.CrossRefGoogle Scholar
  18. 18.
    Lin, F., Cordes, K., Li, L., Hood, L., Couser, W.G., Shankland, S.J., and Igarashi, P., Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice, J. Am. Soc. Nephrol., 2003, vol. 14, no. 5, pp. 1188–1199.CrossRefGoogle Scholar
  19. 19.
    Lin, F., Moran, A., and Igarashi, P., Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney, J. Clin. Invest., 2005, vol. 115, no. 7, pp. 1756–1764.CrossRefGoogle Scholar
  20. 20.
    Masakazu, K., Yoshiko, E., and Masashi, E., Acquired resistance of Listeria monocytogenes in and escaped from liver parenchymal cells to gentamicin is caused by being coated with their plasma membrane, Microbes Infect., 2014, vol. 16, no. 3, pp. 237–243.CrossRefGoogle Scholar
  21. 21.
    McCampbell, K.K., and Winger, R.A., New tides: using zebrafish to study renal regeneration. New tides: using zebrafish to study renal regeneration, Transl. Res., 2014, vol. 163, no. 2, pp. 109–22.CrossRefGoogle Scholar
  22. 22.
    Mochizuki, E., Fukuta, K., Tada, T., Harada, T., Watanabe, N., Matsuo, S., Hashimoto, H., Ozato, K., and Wakamatsu, Y., Fish mesonephric model of polycystic kidney disease in medaka (Oryzias latipes) pc mutant, Kidney Int., 2005, vol. 68, no. 1, pp. 23–34.CrossRefGoogle Scholar
  23. 23.
    Nagai, J., Molecular mechanisms underlying renal accumulation of aminoglycoside antibiotics and mechanism-based approach for developing non-nephrotoxic aminoglycoside therapy, Yakugaku Zasshi, 2006, vol. 126, no. 5, pp. 327–335.CrossRefGoogle Scholar
  24. 24.
    Nagai, J., Tanaka, H., Nakanishi, N., Murakami, T., and Takano, M., Role of megalin in renal handling of aminoglycosides, Am. J. Physiol. Renal Physiol., 2001, vol. 281, no. 2, pp. 337–344.CrossRefGoogle Scholar
  25. 25.
    Osafune, K., Takasato, M., Kispert, A., Asashima, M., and Nishinakamura, R., Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony forming assay, Development, 2006, vol. 133, no. 1, pp. 151–161.CrossRefGoogle Scholar
  26. 26.
    Pfefferli, C., and Jazwinska, A., The art of fin regeneration in zebrafish, Regeneration, 2015, vol. 2, no. 2, pp. 72–83.CrossRefGoogle Scholar
  27. 27.
    Reichenbacher, B., Kamrani, E., Esmaeili, H.R., and Teimori, A., The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology, Environ. Biol. Fish., 2009, vol. 86, no. 1, pp. 507–521.CrossRefGoogle Scholar
  28. 28.
    Reimschuessel, R., A fish model of renal regeneration and development, ILAR J., 2001, vol. 42, no. 4, pp. 285–291.CrossRefGoogle Scholar
  29. 29.
    Reimschuessel, R., Bennett, R.O., May, E.B., and Lipsky, M.M., Development of newly formed nephrons in, the goldfish kidney following hexachlorobutadiene-induced nephrotoxicity, Toxicol. Pathol., 1990, vol. 18, no. 1, pp. 32–38.CrossRefGoogle Scholar
  30. 30.
    Reimschuessel, R., Chamie, S.J., and Kinnel, M., Evaluation of gentamicin-induced nephrotoxicosis in toadfish, J. Am. Vet. Med. Assoc., 1996, vol. 209, no. 1, pp. 137–139.Google Scholar
  31. 31.
    Roberts, R.J., and Ellis, A.E., The anatomy and physiology of teleosts, in Fish Pathology, Philadelphia: W.B. Saunders, 2001, pp. 12–54.Google Scholar
  32. 32.
    Rookmaaker, M.B., Smits, A.M., van Tolboom, H., T., Wout, K., Martens, A.C., Goldschmeding, R., Joles, J.A., van Zonneveld, A.J., Grone, H.J., Rabelink, T.J., and Verhaar, M.C., Bone-marrow-derived cells contribute to glomerular endothelial repair in experimental glomerulonephritis, Am. J. Pathol., 2003, vol. 163, no. 2, pp. 553–562.CrossRefGoogle Scholar
  33. 33.
    Salice, C.J., Rokous, J.S., Kane, A.S., and Reimschuessel, R., New nephron development in goldfish (Carassius auratus) kidneys following repeated gentamicin-induced nephrotoxicosis, Comp. Med., 2001, vol. 51, no. 1, pp. 56–59.Google Scholar
  34. 34.
    Saunders, H.L., Oko, A.L., Scott, A.N., Fan, C.W., and Magor, B.G., The cellular context of AID expressing cells in fish lymphoid tissues, Dev. Comp. Immunol., 2010, vol. 34, no. 6, pp. 669–76.CrossRefGoogle Scholar
  35. 35.
    Selimoglu, E., Aminoglycoside-induced ototoxicity, Curr. Pharm. Des., 2007, vol.13, no. 1, pp. 119–126.CrossRefGoogle Scholar
  36. 36.
    Steinel, N.C., and Bolnick, D.I., Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms, Front. Immunol., 2017, vol. 1, no. 8, pp. 827. doi 10.3389/fimmu.2017.00827CrossRefGoogle Scholar
  37. 37.
    Tavafi, M., and Ahmad, H., Effect of rosmarinic acid on inhibition of gentamicin induced nephrotoxicity in rats, Tissue Cell, 2011, vol. 43, no. 6, pp. 392–397.CrossRefGoogle Scholar
  38. 38.
    Teimori, A., Schulz-Mirbach, T., Esmaeili, H.R., and Reichenbacher, B., Geographical differentiation of Aphanius dispar (Teleostei: Cyprinodontidae) from Southern Iran, J. Zool. Syst. Evol. Res., 2012a, vol. 50, no. 4, pp. 289–304.CrossRefGoogle Scholar
  39. 39.
    Teimori, A., Jawad, L.A.J., Al-Kharusi, L.H., Al-Mamry, J.M., and Reichenbacher, B., Late Pleistocene to Holocene diversification and historical zoogeography of the Arabian killifish (Aphanius dispar) inferred from otolith morphology, Sci. Mar., 2012b, vol. 76, no. 4, pp. 637–45.Google Scholar
  40. 40.
    Teimori, A., Motamedi, M., and Askari Hesni, M., Fish morphology and mitochondrial phylogeny reveal translocations of a native Aphanius Nardo, 1827 (Teleostei: Cyprinodontidae) in Iran, Iran. J. Ichthyol., 2016, vol. 3, no. 3, pp. 181–189.Google Scholar
  41. 41.
    Teimori, A., Esmaeili, H.R., Hamidan, N., and Reichenbacher, B., Systematics and historical biogeography of the Aphanius dispar species group (Teleostei: Aphaniidae) and description of a new species from Southern Iran, J. Zool. Syst. Evol. Res., 2018 (in press). doi 10.1111/jzs.12228Google Scholar
  42. 42.
    Wagner, G.P., and Misof, B.Y., Evolutionary modification of regenerative capability in vertebrates: a comparative study on teleost pectoral fin regeneration, J. Exp. Zool. Ecol. Genet. Physiol., 1992, vol. 261, no. 1, pp. 62–78.Google Scholar
  43. 43.
    Wildekamp, R.H., A World of Killies: Atlas of the Oviparous Cyprinodontiform Fishes of the World, Vol. 1: The Genera Adamas, Adinia, Aphanius, Aphyoplatys and Aphyosemion, Houston: Am. Killifish Assoc., 1993.Google Scholar
  44. 44.
    Wright, P.A., Nitrogen excretion: three end products, many physiological roles, J. Exp. Biol., 1995, vol. 198, no. 2, pp. 273–281.Google Scholar
  45. 45.
    Wojciech, L., and Vincent, L.P., Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species, ‎Chem. Res. Toxicol., 2005, vol. 18, no. 2, pp. 357–364.CrossRefGoogle Scholar
  46. 46.
    Zeinali, F., and Motamedi, M., The regeneration capacity of caudal fin in the common tooth-carp, Aphanius hormuzensis (Rüppell, 1829) (Teleostei: Cyprinodontidae), Int. J. Aquat. Biol., 2017, vol. 5, no. 2, pp. 321–327.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Sciences, Shahid Bahonar University of KermanKermanIran

Personalised recommendations