Advertisement

Journal of Ichthyology

, Volume 57, Issue 4, pp 625–629 | Cite as

Role of phospholipids in early ontogenesis of Arctic-Boreal species Leptoclinus maculatus (Stichaeidae)

  • S. N. Pekkoeva
  • S. A. Murzina
  • Z. A. Nefedova
  • T. R. Ruokolainen
  • S. Falk-Petersen
  • J. Berge
  • O. J. Lønne
  • N. N. Nemova
Article
  • 25 Downloads

Abstract

The content of total phospholipids and their classes (phosphatidylinositol, phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, sphingomyelin) of muscles (flesh) and lipid sac of different developmental stages of young fish the daubed shanny, Leptoclinus maculatus from Kongsfjord (Svalbard, Norway) in winter was studied. The content of phospholipids in flesh decreases with age on account of phosphatidylcholine and phosphatidylethanolamine that probably related to their role in morphogenesis during differentiation of tissues and organs. The content of phospholipids is lower than reserve lipids in the lipid sac. The level of phospholipids in the lipid sac compared to flesh increases with age of fish reaching the maximum in benthic juveniles. Variations of minor phospholipids content of young fish of the daubed shanny indicate their participation in biochemical mechanisms of adaptation realizing in specific and varying Arctic conditions.

Keywords

daubed shanny Leptoclinus maculatus phospholipids development adaptations marine ecosystems the Arctic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arduini, A., Peschechera, A., Dottori, S., et al., High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies, J. Lipid Res., 1996, vol. 37, pp. 684–689.PubMedGoogle Scholar
  2. Boldyrev, A.A., Kyaivyaryainen, E.I., and Ilyukha, V.A., Biomembranologiya: uchebnoe sosbie (Biological Membranes: Manual), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2006.Google Scholar
  3. Cahu, C.L., Gisbert, E., Villeneuve, L.A., et al., Influence of dietary phospholipids on early ontogenesis of fish, Aquacult. Res., 2009, vol. 40, no. 9, pp. 989–999.CrossRefGoogle Scholar
  4. Coutteau, P., Geurden, I., Camara, M.R., et al., Review on the dietary effects of phospholipids in fish and crustacean larviculture, Aquaculture, 1997, vol. 155, pp. 149–164.CrossRefGoogle Scholar
  5. Falk-Petersen, S., Falk-Petersen, I.-B., and Sargent, J.R., Structure and function of an unusual lipid storage organ in the Arctic fish Lumpenus maculatus Fries, 1838, Sarsia, 1986, vol. 71, pp. 1–6.CrossRefGoogle Scholar
  6. Folch, J., Lees, M., and Sloan-Stanley, G.H., A simple method for the isolation and purification of total lipids animal tissue (for brain, liver and muscle), J. Biol. Chem., 1957, vol. 226, pp. 497–509.PubMedGoogle Scholar
  7. Gribanov, G.A., Specific structure and biological role of lysophospholipids, Vopr. Med. Khim., 1991, vol. 37, no. 4, pp. 2–16.PubMedGoogle Scholar
  8. Hansen, Ø.J., Puvanendran, V., Jøstensen, J.P., and Ous, C., Effects of dietary levels and ratio of phosphatidylcholine (PC) and phosphatidylinositol (PI) on the growth, survival and deformity levels of Atlantic cod larvae and early juveniles, Aquacult. Res., 2011, vol. 42, pp. 1026–1033.CrossRefGoogle Scholar
  9. Ipatova, O.M., Torkhovskaya, T.I., Zakharova, T.S., and Khalilov, E.M., Sphingolipids and cell signaling: involvement in apoptosis and atherogenesis, Biochemistry (Moscow), 2006, vol. 71, no. 7, pp. 713–722.CrossRefGoogle Scholar
  10. Ivanter, E.V. and Korosov, A.V., Elementarnaya biometriya: uchebnoe posobie (Elementary Biometry: Manual), Petrozavodsk: Petrozavodsk. Gos. Univ., 2010.Google Scholar
  11. Kreps, E.M., Lipidy kletochnykh membrane. Evolyutsiya lipidov mozga. Adaptatsionnaya funktsiya lipidov (Lipids of Cell Membranes. Evolution of Brain Lipids. Adaptation Function of Lipids), St. Petersburg: Nauka, 1981.Google Scholar
  12. Lapin, V.I. and Shatunovskii, M.I., Specific composition, physiological and ecological significance of fish lipids, Usp. Sovrem. Biol., 1981, vol. 92, no. 3 (6), pp. 380–394.Google Scholar
  13. Lloret, J., Shulman, G., and Love, R.M., Conditions and Health Indicators of Exploited Marine Fish, Hoboken: Wiley, 2014.Google Scholar
  14. Meyer Ottesen, C.A., Hop, H., Christiansen, J.S., and Falk-Petersen, S., Early life history of the daubed shanny (Teleostei: Lepticlinus maculatus) in Svalbard waters, Mar. Biodiversity, 2011, vol. 41, no. 3, pp. 383–394.CrossRefGoogle Scholar
  15. Murzina, S.A., Meyer Ottesen, C.A., Falk-Petersen, S., et al., Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters, Fish Physiol. Biochem., 2012, vol. 38, no. 5, pp. 1393–1407.CrossRefPubMedGoogle Scholar
  16. Murzina, S.A., Nefedova, Z.A., Falk-Petersen, S., et al., Lipids in the Arctic fish Leptoclinus maculatus in Svalbard, Polar Biol., 2013, vol. 36, no. 11, pp. 1619–1631.CrossRefGoogle Scholar
  17. Murzina, S.A., Nefedova, Z.A., Ruokolainen, T.R., Vasil’eva, O.B., and Nemova, N.N., Dynamics of lipid content during early development of freshwater salmon Salmo salar L., Russ. J. Dev. Biol., 2009, vol. 40, no. 3, pp. 165–170.CrossRefGoogle Scholar
  18. Nemova, N.N., Murzina, S.A., Nefedova, Z.A., et al., Lipid status of larvae and adults of the White Sea herring Clupea pallasi marisalbi Berg (Clupeiformes, Clupeidae), Dokl. Biochem. Biophys., 2015, vol. 460, no. 1, pp. 37–41.CrossRefPubMedGoogle Scholar
  19. Osadchaya, L.M., Galkina, O.V., and Eshchenko, N.D., Influence of corasol on activity of Na+, K+-ATPase and lipid peroxidation intensity in neurons and neuroglia, in Biokhimicheskie i molekulyarno-biologicheskie osnovy fiziologicheskikh funktsii (Biochemical and Molecular-Biological Principles of Physiological Functions), St. Petersburg: S.-Peterb. Gos. Univ., 2004, no. 37, pp. 220–226.Google Scholar
  20. Pavlovic, Z. and Bakovic, M., Regulation of phosphatidylethanolamin homeostasis—the critical role of CTP: phosphoetanolamin cytidylyltransferase (Pcyt2), Int. J. Mol. Sci., 2013, vol. 14, pp. 2529–2550.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Prokazova, N.V., Zvezdina, N.D., and Korotaeva, A.A., Effect of lysophosphatidylcholine on transmembrane signal transduction, Biochemistry (Moscow), 1998, vol. 63, no. 1, pp. 31–37.Google Scholar
  22. Rainuzzo, J.R., Reitan, K.I., and Olsen, Y., The significance of lipids at early stages of marine fish: a review, Aquaculture, 1997, vol. 155, pp. 103–115.CrossRefGoogle Scholar
  23. Sergeeva, M.G. and Varfolomeeva, A.T., Kaskad arakhidonovoi kisloty (Arachidonic Acid Cascade), Moscow: Narodnoe Obrazovanie, 2006.Google Scholar
  24. Sidorov, V.S., Lizenko, E.I., Bolgova, O.M., and Nefedova, Z.A., Fish lipids. 1. Analysis methods. Tissue specificity of European cisco Coregonus albula L., in Lososevye (Salmonidae) Karelii (Salmon Fishes (Salmonidae) in Karelia), Petrozavodsk: Karel. Fil., Akad. Nauk SSSR, 1972, no. 1, pp. 152–163.Google Scholar
  25. Smith, W.L. and Murphy, R.C., The eicosanoids: cyclooxygenase, lipoxygenase and epoxygenase pathways, in Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E., Eds., Amsterdam: Elsevier, 2003, pp. 341–371.Google Scholar
  26. Tillman, T.S. and Cascio, M., Effects of membrane lipids on ion channel structure and function, Cell Biochem. Biophys., 2003, vol. 38, no. 2, pp. 161–190.CrossRefPubMedGoogle Scholar
  27. Tocher, D.R, Bendiksen, E., Campbell, P., and Bell, J., The role of phospholipids in nutrition and metabolism of Teleost fish, Aquaculture, 2008, vol. 280, pp. 21–34.CrossRefGoogle Scholar
  28. Walch, D.E., Banasik, O.J., and Gilles, K.A., Thin-layer chromatographic separation and colorimetric analysis of barley or malt lipid classes and their fatty acids, Chromatography, 1965, vol. 17, no. 2, pp. 78–85.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. N. Pekkoeva
    • 1
  • S. A. Murzina
    • 1
  • Z. A. Nefedova
    • 1
  • T. R. Ruokolainen
    • 1
  • S. Falk-Petersen
    • 2
    • 3
  • J. Berge
    • 3
    • 4
  • O. J. Lønne
    • 4
  • N. N. Nemova
    • 1
  1. 1.Institute of Biology, Karelian Research Centerthe Russian Academy of SciencesPetrozavodskRussia
  2. 2.Akvaplan-Niva ASFram CentreTromsøNorway
  3. 3.Department of Arctic and Marine BiologyThe Arctic University of Norway (UiT)TromsøNorway
  4. 4.The University Center in Svalbard (UNIS)LongyearbyenNorway

Personalised recommendations