Journal of Ichthyology

, Volume 56, Issue 4, pp 556–568 | Cite as

Timeline of the evolution of eelpouts from the suborder Zoarcoidei (Perciformes) based on DNA variability

  • O. A. Radchenko


Based on the analysis of variability of mitochondrial and nuclear DNA and calibration of the molecular clock using the paleontological data, the divergence time of the eelpouts is assessed. The temporal frames of the evolution of the suborder Zoarcoidei are restricted to the Late Oligocene and the middle of the Late Miocene, within a diapason of approximately 12 Ma. The families Bathymasteridae and Cebidichthyidae were the first to separate from the common ancestor, 14.7–22.5 and 13.1–19.1 Ma, respectively. The differentiation of other families occurred between the Middle and the Late Miocene approximately 10–15 Ma. The period from the Late Miocene to the Mid-Pliocene (3.6–7.8 Ma), most likely, was the time of the appearance and distribution of the present species of the suborder. Assessment of the DNA divergence rate in the eelpouts conducted in this study is in accordance with known evolutionary scenarios and with key steps of geological development of the World Ocean.


suborder Zoarcoidei mitochondrial DNA nuclear DNA fossil remains DNA divergence time 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M.E., Systematics and osteology of the Zoarcidae (Teleostei: Perciformes), Ichthyol. Bull. J.L.B. Smith Inst. Ichthyol., 1994, no. 60.Google Scholar
  2. Anderson, M.E., Suborder: Zoarcoidei (eelpouts and relatives), in Grzimek’s Animal Life Encyclopedia, Vol. 5: Fishes II, Farmington Hills, MI: Gale Group, 2003, pp. 309–320.Google Scholar
  3. Andriashev, A.P. and Chernova, N.V., Annotated list of fish-like species and fishes of the Arctic seas and adjacent waters, Vopr. Ikhtiol., 1994, vol. 34, no. 4, pp. 435–456.Google Scholar
  4. Andriashev, A.P. and Chernova, N.V., Three new species of Liparids (Scorpaeniformes: Liparidae) from the Arctic bathyal, Tr. Zool. Inst., Ross. Akad. Nauk, 2010, vol. 314, no. 4, pp. 365–380.Google Scholar
  5. Avise, J.C., Molecular Markers, Natural History, and Evolution, New York: Chapman and Hall, 1994.CrossRefGoogle Scholar
  6. Balushkin, A.V., Fossil notothenioid, and not gadiform, fish Proeleginops grandeastmanorum gen. nov. sp. nov. (Perciformes, Notothenioidei, Eleginopidae) from the late Eocene found in Seymour Island (Antarctica), Vopr. Ikhtiol., 1994, vol. 34, no. 3, pp. 298–307.Google Scholar
  7. Betancur, R.R., Broughton, R.E., Wiley, E.O., et al., The tree of life and a new classification of bony fishes, PLoS Curr. Tree Life, 2013. doi 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288Google Scholar
  8. Bezverkhnii, V.L., Pletnev, S.P., and Nabiullin, A.A., Review of geological structure and development of Kuril Island arc system and adjacent areas, in Rastitel’nyi i zhivotnyi mir Kuril’skikh ostrovov (Flora and Fauna of Kuril Islands), Vladivostok: Dal’nauka, 2002, pp. 9–22.Google Scholar
  9. Biske, S.F., Paleogen i neogen Krainego Severo-Votoka SSSR (Palaeogene and Neogene of Extreme Northeast of Soviet Union), Novosibirsk: Nauka, 1975.Google Scholar
  10. Briggs, J.C., Marine Zoogeography, New York: McGraw-Hill, 1974.Google Scholar
  11. Briggs, J.C., Marine centers of origin as evolutionary engines, J. Biogeogr., 2003, vol. 30, pp. 1–18.CrossRefGoogle Scholar
  12. Brunner, P.C., Douglas, M.R., and Osinov, A.G., Holarctic phylogeography of arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences, Evolution, 2001, vol. 55, no. 3, pp. 573–586.CrossRefPubMedGoogle Scholar
  13. Catalog of Fishes, Version 03/2014, Eschmeyer, W.N., Ed., 2014. Scholar
  14. Chereshnev, I.A. and Poezzhalova-Chegodaeva, E.A., Sistematika i biologiya bel’dyug roda Zoarces (Zoarcidae, Pisces) severnoi chasti Okhotskogo morya (Systematics and Biology of Eelpouts of the Genus Zoarces of the Northern Sea of Okhotsk), Magadan: Sev.-Vost. Nauchn. Tsentr, Dal’nevost. Otd., Ross. Akad. Nauk, 2011.Google Scholar
  15. Dettai, A. and Lecointre, G., In search of notothenioid (Teleostei) relatives, Antarct. Sci., 2004, vol. 16, no. 1, pp. 71–85.CrossRefGoogle Scholar
  16. Drummond, A.J., Suchard, M.A., Xie, D., and Rambaut, A., Bayesian phylogenetics with BEAUti and the BEAST 1.7, Mol. Biol. Evol., 2012, vol. 29, pp. 1969–1973. doi 10.1093/molbev/mss075CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fedorov, V.V., An annotated catalog of fishlike vertebrates and fishes of the seas of Russia and Adjacent Countries. Part 6. Suborder Zoarcoidei, J. Ichthyol., 2004, vol. 44, suppl. 1, pp. 73–128.Google Scholar
  18. Fedorov, V.V., Chereshnev, I.A., Nazarkin, M.V., et al., Katalog morskikh i presnovodnykh ryb severnoi chasti Okhotskogo morya (Catalogue of Marine and Freshwater Fishes of Northern Part of the Sea of Okhotsk), Vladivostok: Dal’nauka, 2003.Google Scholar
  19. Fedorov, V.V. and Parin, N.V., Pelagicheskie i bentopelagicheskie ryby tikhookeanskikh vod Rossii (v predelakh 200-mil’noi ekonomicheskoi zony) (Pelagic and Benthopelagic Fishes of Pacific Waters of Russia (within the 200-Mile Economic Zone)), Moscow: VNIRO, 1998.Google Scholar
  20. Fishes of Japan with Pictorial Keys to the Species, Nakabo, T., Ed., Tokyo: Tokai. Univ. Press, 2002, vols. 1–2.Google Scholar
  21. Fitch, J.E., The marine fish fauna, based primarily on otoliths, of a lower Pleistocene deposit at San Pedro, California (Lacmip 332, San Pedro Sand), Nat. Hist. Mus. Los Angeles Cty. Contrib. Sci., 1967, no. 128, pp. 1–23.Google Scholar
  22. Greenwood, P.H., Rosen, D.E., Weitzman, S.H., and Myers, G.S., Phyletic studies of Teleostean fishes with a provisional classification of living forms, Bull. Am. Mus. Nat. Hist., 1966, vol. 131, no. 4, pp. 339–456.Google Scholar
  23. Janko, K., Marshall, C., Musilova, Z., et al. Multilocus analyses of an Antarctic fish species flock (Teleostei, Notothenioidei, Trematominae): phylogenetic approach and test of the early-radiation event, Mol. Phylogenet. Evol., 2011, vol. 60, pp. 305–316.CrossRefPubMedGoogle Scholar
  24. Kafanov, A.I., Centers of origin and some features of ecological evolution of the cold water marine malacofaunas in Northern Hemisphere, Biol. Morya (Vladivostok), 1978, no. 1, pp. 3–9.Google Scholar
  25. Kafanov, A.I., Cainozoe history of malacofauna of the self of Northern Pacific, in Morskaya biogeografiya (Marine Biogeography), Moscow: Nauka, 1982, pp. 134–176.Google Scholar
  26. Kafanov, A.I. and Kudryashov, V.A., Morskaya biogeografiya (Marine Biogeography), Moscow: Nauka, 2000.Google Scholar
  27. Kuhn, K. and Near, T.J., Phylogeny of Trematomus (Notothenioidei: Nototheniidae) inferred from mitochondrial and nuclear gene sequences, Antarct. Sci., 2009, vol. 21, pp. 565–570.CrossRefGoogle Scholar
  28. Leache, A.D. and Reeder, T.W., Molecular systematic of the eastern fence lizard (Sceloporus undulates): a comparison of parcimony, likelihood, and Bayesian approaches, Syst. Biol., 2002, vol. 51, no. 1, pp. 44–68.CrossRefPubMedGoogle Scholar
  29. Lindberg, G.U., Krupnye kolebaniya urovnya okeana v chetvertichnyi period. Biogeograficheskoe obosnovanie gipotezy (Large Fluctuations of the Ocean Level in Quaternary: Biogeographic Description of Hypothesis), Leningrad: Nauka, 1972.Google Scholar
  30. Lopes, J.A., Chen, W.-J., and Orti, G., Esociform phylogeny, Copeia, 2004, no. 3, pp. 449–464.CrossRefGoogle Scholar
  31. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning, a Laboratory Manual, New York: Cold Spring Harbor Lab., 1982.Google Scholar
  32. Matallanas, J., Description of two new genera, Santelmoa and Bentartia and two new species of Zoarcidae (Teleostei: Perciformes) from the Southern Ocean, Polar Biol., 2010, vol. 33, no. 5, pp. 659–672.CrossRefGoogle Scholar
  33. Matallanas, J. and Corbella, C., Re-description of Iluocoetes Jenyns, 1842, proposal of a new genus, Argentinolycus, for Iluocoetes elongatus (Smitt, 1898) and description of Patagolycus melastomus, gen. et sp. nov. (Teleostei, Zoarcidae), Zootaxa, 2012, no. 3296, pp. 1–18.Google Scholar
  34. Matallanas, J., Corbella, C., and Møller, P.R., Description of two new species of Santelmoa, Santelmoa fusca sp. nov. and Santelmoa antarctica sp. nov. (Teleostei, Zoarcidae), Polar Biol., 2012, no. 9, pp. 1395–1405.CrossRefGoogle Scholar
  35. Mecklenburg, C.W. and Sheiko, B.A., Family Stichaeidae Gill, 1864 pricklebacks, in Annotated Checklist of Fishes, Calif. Acad. Sci., 2004, no. 35, pp. 1–36.Google Scholar
  36. Milner, A.R.C. and Ryan, M.J., Late Pleistocene vertebrates along the northwestern margin of the Champlain Sea, in Field Trip Guidebook for 66-th Annual Meeting of the Society of Vertebrate Paleontology, Ottawa, Canada, 2006Google Scholar
  37. Møller, P.R. and Gravlund, P., Phylogeny of the eelpout genus Lycodes (Pisces, Zoarcidae) as inferred from mitochondrial cytochrome b and 12S rDNA, Mol. Phylogenet. Evol., 2003, vol. 26, pp. 369–388.CrossRefPubMedGoogle Scholar
  38. Nazarkin, M.V., Miocene fishes from Agnevskaya formation of the Sakhalin Island: fauna, systematics, and origi n, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg: St. Peterb. State Univ., 2000.Google Scholar
  39. Near, T.J. and Benard, M.F., Rapid allopatric speciation in logperch darters (Percidae: Percina), Evolution, 2004, vol. 58, no. 12, pp. 2798–2808.CrossRefPubMedGoogle Scholar
  40. Osinov, A.G. and Lebedev, V.S., Salmonid fishes (Salmonidae, Salmoniformes): the systematic position in the superorder Protacanthopterygii, the main stages of evolution, and molecular dating, J. Ichthyol., 2004, vol. 44, no. 9, p. 690.Google Scholar
  41. Pavlinov, I.Ya., Structure of phylogenesis and phylogenetic hypothesis, in Teoreticheskie i prakticheskie problemy izucheniya soobshchestv bespozvonochnykh (Theoretical and Applied Problems of Study of Invertebrate Communities), Moscow: KMK, 2007, pp. 81–129.Google Scholar
  42. Pletnev, S.P., Historical and geological development of the Sakhalin Island, in Rastitel’nyi i zhivotnyi mir ostrova Sakhalin (Flora and Fauna of Sakhalin Island), Vladivostok: Dal’nauka, 2004, pp. 11–22.Google Scholar
  43. Posada, D. and Crandall, K.A., Modeltest: testing the model of DNA substitution, Bioinformatics, 1998, vol. 14, pp. 817–818.CrossRefPubMedGoogle Scholar
  44. Pushcharovskii, Yu.M., How Arctic Ocean has risen? Priroda (Moscow), 1976, no. 10, pp. 96–105.Google Scholar
  45. Radchenko, O.A., Chereshnev, I.A., and Petrovskaya, A.V., Relationships and divergence of some taxa of the subfamily Lycodinae (Zoarcidae, Pisces) based on molecular-genetic and morphological data, J. Ichthyol., 2009, vol. 49, no. 8, pp. 585–598.CrossRefGoogle Scholar
  46. Radchenko, O.A., Chereshnev, I.A., and Petrovskaya, A.V., New data on phylogenetic relationships between taxons of subfamily Gymnelinae (Zoarcidae) received after analysis of mitochondrial and nuclear DNA, Vestn. Sev.-Vost. Nauchn. Tsentra, Dal’nevost. Otd., Ross. Akad. Nauk, 2010, no. 4, pp. 80–85.Google Scholar
  47. Radchenko, O.A., Chereshnev, I.A., and Petrovskaya, A.V., Genetic differentiation of species and taxonomic structure of the superfamily Stichaeoidea (Perciformes: Zoarcoidei), Russ. J. Mar. Biol., 2014, vol. 40, no. 6, pp. 473–485.CrossRefGoogle Scholar
  48. Radchenko, O.A., Chereshnev, I.A., Petrovskaya, A.V., and Antonenko, D.V., Relationships and position of wrymouths of the family Cryptacanthodidae in the system of the suborder Zoarcoidei (Pisces, Perciformes), J. Ichthyol., 2011, vol. 51, no. 7, pp. 487–499.CrossRefGoogle Scholar
  49. Rambaut, A., Tree figure drawing tool, v. 1.4, 2012. Scholar
  50. Rambaut, A., Suchard, M., and Drummond, A., MCMC trace analysis tool, v. 1.5, 2009. Scholar
  51. Roa-Varon, A. and Orti, G., Phylogenetic relationships among families of Gadiformes (Teleostei, Paracanthopterygii) based on nuclear and mitochondrial data, Mol. Phylogen. Evol., 2009, vol. 52, pp. 688–704.CrossRefGoogle Scholar
  52. Sasaki, T., Kartavtsev, Y.P., Chiba, S.N., et al., Genetic divergence and phylogenetic independence of Far Eastern species in subfamily Leuciscinae (Pisces: Cyprinidae) inferred from mitochondrial DNA analyses, Genes Genet. Syst., 2007, vol. 82, pp. 329–340.CrossRefPubMedGoogle Scholar
  53. Semina, A.V., Molecular evolution and phylogenetic relationships in two fish groups of families Mugilidae and Cyprinidae, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok: Inst. Mar. Biol., Far Eastern Branc, Russ. Acad. Sci., 2008.Google Scholar
  54. Sheiko, B.A. and Fedorov, V.V., Chapter 1. Class Cephalospidomorphi. Class Chondichthyes. Class Holocephali. Class Osteichthyes, in Katalog pozvonochnykh Kamchatki i sopredel’nykh morskikh akvatorii (Catalogue of Vertebrates of Kamchatka and Adjacent Marine Basins), Petropavlovsk-Kamchatskii: Kamchat. Pechat. Dvor, 2000, pp. 7–69.Google Scholar
  55. Shmidt, P.Yu., Ryby Okhotskogo morya (Fishes from the Sea of Okhotsk), Moscow: Akad. Nauk SSSR, 1950.Google Scholar
  56. Sokolovsky, A.S., Dudarev, V.A., Sokolovskaya, T.G., and Solomatov, S.F., Ryby rossiiskikh vod Yaponskogo morya (Fishes of Russian Waters of the Sea of Japan), Vladivostok: Dal’nauka, 2007.Google Scholar
  57. Stepien, C.A., Dillon, A.K., Brooks, M.J., et al., The evolution of blennioid fishes based on an analysis of mitochondrial 12S rDNA, in Molecular Systematics of Fishes, Kocher, T.D. and Stepien, C.A., Eds., San Diego, CA: Academic, 1997, pp. 245–270.CrossRefGoogle Scholar
  58. Stewart, R.H., Republic of Panama, in Entsiklopediya regional’noi geologii mira (Encyclopedia of Regional Geology of the World), Leningrad: Nauka, 1980, pp. 411–413.Google Scholar
  59. Zuckerkandl, E. and Pauling, L., Evolutionary divergence and convergence in proteins, in Evolving Genes and Proteins, Bryson, V. and Vogel, H., Eds., New York: Academic, 1965, pp. 97–166.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Biological Problems of the North, Far Eastern BranchRussian Academy of SciencesMagadanRussia

Personalised recommendations