Journal of Ichthyology

, Volume 53, Issue 8, pp 628–640

Predicting the spatial distribution of the blue-spotted maskray Neotrygon kuhlii (Myliobatiformes, Dasyatidae) on the Australian North and Northwest Shelf comparing two different methods of habitat modeling

Article

Abstract

Knowledge about distribution and habitat requirements of species is important for analyzing their role in marine ecosystems or establishing sanctuaries. However, knowledge is scarce especially in many chondrichthyan species. In this study, the spatial distribution of the stingray Neotrygon kuhlii on the Australian North and Northwest Shelf was predicted model-based for the first time. Predictions based on two different types of habitat suitability models, logistic regression and maximum entropy modeling. Catch data of N. kuhlii from Australian trawl surveys combined with randomly selected pseudo-absences were used for modeling together with data sets of several environmental variables. Both modeling methods yielded plausible and validated habitat suitability models containing water depth and salinity as significant independent variables. The model-based predictions of the probability of occurrence of N. kuhlii were similar for both methods and thus emphasized the goodness of the models. Following the predictions, N. kuhlii has its highest probability of occurrence in about 60 m water depth and at a salinity of about 35 PSU. The results indicate that both modeling methods are powerful tools to predict spatial distribution and habitat quality for marine fish species. Therefore, they are suitable for detecting possible distribution in areas with only few field records.

Keywords

blue-spotted maskray Neotrygon kuhlii northern Australian shelf habitat suitability models Generalized Linear Model logistic regression maximum entropy predicted occurrences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amante, C. and Eakins, B.W., ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA Tech. Mem. NESDIS NGDC-24, 2009.Google Scholar
  2. Austin, M.P., Spatial prediction of species distribution: an interface between ecological theory and statistical modelling, Ecol. Model., 2002, vol. 157, nos. 2–3, pp. 101–118.CrossRefGoogle Scholar
  3. Backhaus, K., Erichson, B., Plinke, W., and Weiber, R., Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, Berlin: Springer, 2006, 11th ed.Google Scholar
  4. Camhi, M., Fowler, S.L., Musick, J.A., Bräutigam, A., and Fordham, S.V., Sharks and their Relatives — Ecology and Conservation, IUCN/SSC Occ. Pap., no. 20, 1998.Google Scholar
  5. Camhi, M.D., Valenti, S.V., Fordham, S.V., Fowler, S.L., and Gibson, C. The Conservation Status of Pelagic Sharks and Rays: Report of the IUCN Shark Specialist Group Pelagic Shark Red List Workshop, Newbury: IUCN/SSC Shark Specialist Group, 2009.Google Scholar
  6. Chen, H., Chen, L.J., and Albright, T.P., Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: A case of ragweed (Ambrosia artemisiifolia L.) distribution in China, Chin. Sci. Bull., 2007, vol. 52, no. 9, pp. 1223–1230.CrossRefGoogle Scholar
  7. Crawley, M.J., GLIM for Ecologists, Oxford: Blackwell Publishing, 1993.Google Scholar
  8. Crawley, M.J., Statistical Computing — An Introduction to Data Analysis using S-Plus, Chichester: Wiley, 2002.Google Scholar
  9. CSIRO, CSIRO Marine Data Trawler, 2004. www.marine.csiro.au/warehouse/isp/loginpage.jsp. Accessed April 12, 2010.
  10. Daley, R.K., Stevens, J.D., Last, P.R., and Yearsley, G.K., Field Guide to Australian Sharks and Rays, reprint with minor correction, Melbourne: CSIRO Publ., 2007.Google Scholar
  11. Dudík, M., Phillips, S.J., and Schapire, R.E., Performance Guarantees for Regularized Maximum Entropy Density Estimation, in Proceedings of the 17th Annual Conference on Computational Learning Theory, 2004, pp. 472–486.Google Scholar
  12. Elith, J., Quantitative methods for modelling species habitat: comparative performance and an application to Australian plants, in Quantitative Methods for Conservation Biology, New York: Springer, 2000, pp. 39–58.CrossRefGoogle Scholar
  13. Elith, J. and Graham, C.H., Do they? How do they? WHY do they differ? — on finding reasons for differing performances of species distribution models, Ecography, 2009, vol. 32, no. 1, pp. 66–77.CrossRefGoogle Scholar
  14. Elith, J., Graham, C.H., Anderson, R.P., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 2006, vol. 29, no. 2, pp. 129–151.CrossRefGoogle Scholar
  15. Elith, J., Phillips, S.J., Hastie, T., et al., A statistical explanation of MaxEnt for ecologists, Diversity Distrib., 2011, vol. 17, no. 1. pp. 43–57CrossRefGoogle Scholar
  16. ESRI, ArcMap ver. 9.3.1, Redlands: Environ. Syst. Res. Inst., 1999–2009.Google Scholar
  17. Fahmi and White, W., Dasyatis kuhlii, in IUCN 2010, IUCN Red List of Threatened Species, ver. 2010.2, 2007. http://www.iucnredlist.org. Accessed August 16, 2010.Google Scholar
  18. Ferrier, S. and Watson, G., An Evaluation of the Effectiveness of Environmental Surrogates and Modelling Techniques in Predicting the Distribution of Biological Diversity, Canberra: Dpt. Environ., Sports Territ., Commonwealth Aust. NSW National Parks and Wildlife Service, 1997.Google Scholar
  19. Ferrier, S., Watson, G., Pearce, J., and Drielsma, M., Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling, Biodiversity Conserv., 2002, vol. 11, no. 12, pp. 2275–2307.CrossRefGoogle Scholar
  20. Fielding, A.H. and Bell, J.F., A review of methods for the assessment of prediction errors in conservation presence/absence models, Environ. Conserv., 1997, vol. 24, no. 1, pp. 38–49.CrossRefGoogle Scholar
  21. Fielding, A.H. and Haworth, P.F., Testing the generality of bird-habitat models, Conserv. Biol., 1995, vol. 9, no. 6, pp. 1466–1481.CrossRefGoogle Scholar
  22. Finanztip, Zufallsgenerator: z. B. Lottozahlen tippen, 2010. http://www.finanztip.de/tip/service/lottozahlengeneratorzufallszahl.htm. Accessed July 22, 2010.Google Scholar
  23. Forsskål, P., Descriptiones animalium: avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit. Post mortem auctoris edidit Carsten Niebuhr, Copenhagen, 1775.CrossRefGoogle Scholar
  24. Fowler, S.L., Cavanagh, R.D., Camhi, M., et al., Sharks, Rays and Chimaeras: The Status of the Chondrichthyan Fishes. Status Survey, Cambridge: IUCN/SSC Shark Specialist Group, 2005.Google Scholar
  25. Graham, C.H., Ferrier, S., Huettman, F., Moritz, C., and Townsend Peterson, A., New developments in museum-based informatics and applications in biodiversity analysis, Trends Ecol. Evol., 2004, vol. 19, no. 9, pp. 497–503.PubMedCrossRefGoogle Scholar
  26. Griffiths, S.P., Brewer, D.T., Heales, D.S., Milton, D.A., and Stobutzki, I.C., Validating ecological risk assessments for fisheries: assessing the impacts of turtle excluder devices on elasmobranch bycatch populations in an Australian trawl fishery, Mar. Freshwater Res., 2006, vol. 57, no. 4, pp. 395–401.CrossRefGoogle Scholar
  27. Guisan, A. and Thuillier, W., Predicting species distribution: offering more than simple habitats models, Ecol. Lett., 2005, vol. 8, no. 9, pp. 993–1009.CrossRefGoogle Scholar
  28. Guisan, A. and Zimmermann, N.E., Predictive habitat distribution models in ecology, Ecol. Model., 2000, vol. 135, nos. 2–3, pp. 147–186.CrossRefGoogle Scholar
  29. Hendricks, P., Maxell, B., Lenard, S., and Currier, C., Surveys and Predicted Distribution Models for Land Mollusks on USFS Northern Region Lands: 2007. A report to the USDA Forest Service, Northern Region, Helena: Montana Natural Heritage Program, 2008.Google Scholar
  30. Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C., and Guisan, A., Evaluating the ability of habitat suitability models to predict species presences, Ecol. Model., 2006, vol. 199, no. 2, pp. 142–152.CrossRefGoogle Scholar
  31. Hosmer, D.W. and Lemeshow, S., Applied Logistic Regression, New York: Wiley, 2000, 2nd ed.CrossRefGoogle Scholar
  32. IOC, IHO, and BODC, Centenary Edition of the GEBCO Digital Atlas, Liverpool, UK: British Oceanographic Data Centre, 2008.Google Scholar
  33. Jacobsen, I.P. and Bennett, M.B., Feeding ecology and dietary comparisons among three sympatric Neotrygon (Myliobatoidei: Dasyatidae) species, J. Fish Biol., 2012, vol. 80, no. 5, pp. 1580–1594.PubMedCrossRefGoogle Scholar
  34. Kaschner, K., Ready, J.S., Agbayani, E. et al., AquaMaps: Predicted range maps for aquatic species, 2008. http://www.aquamaps.org. Accessed March 17, 2010.Google Scholar
  35. Last, P.R., New Australian fishes. Part 14: Two new species of Dasyatis (Dasyatidae), Mem. Nat. Mus. Vic., 1987, vol. 48, no. 1, pp. 57–61.Google Scholar
  36. Last, P.R. and Compagno, L.J.V., Dasyatidae, in FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Vol. 3: Batoid Fishes, Chimaeras and Bony Fishes Part 1 (Elopidae to Linophrynidae), Carpenter, K.E. and Niem, V.H., Eds., Rome: FAO, 1999.Google Scholar
  37. Last, P.R., Stevens, J.D., Sharks and Rays of Australia, Melbourne: CSIRO Publ., 2009, 2nd ed.Google Scholar
  38. Manel, S., Williams, H.C., and Ormerod, S.J., Evaluating presence-absence models in ecology: the need to account for prevalence, J. Appl. Ecol., 2001, vol. 38, no. 5, pp. 921–931.CrossRefGoogle Scholar
  39. Müller, J. and Henle, F.G.J., Systematische Beschreibung der Plagiostomen, Berlin: Veit & Comp., 1841, pp. 103–200.CrossRefGoogle Scholar
  40. Myers, R. and Worm, B., Rapid worldwide depletion of predatory fish communities, Nature, 2003, vol. 423, pp. 280–283.PubMedCrossRefGoogle Scholar
  41. Nagelkerke, N.J.D., A note on a general definition of the coefficient of determination, Biometrika, 1991, vol. 78, no. 3, pp. 691–692.CrossRefGoogle Scholar
  42. O’Shea, O.R., Thums, M., van Keulen, M., and Meekan, M., Bioturbation by stingrays at Ningaloo Reef, Western Australia, Mar. Freshwater Res., 2012, vol. 63, no. 3, pp. 189–197.CrossRefGoogle Scholar
  43. Pearce, J.L. and Boyce, M.S., Modeling distribution and abundance with presence-only data, J. Appl. Ecol., 2006, vol. 43, no. 3, pp. 405–412.CrossRefGoogle Scholar
  44. Petkovic, P., and Buchanan, C., Australian Bathymetry and Topography Grid, Canberra: Geoscience Australia, 2002. http://wwvv.ga.gov.au/general/technotes/20011023-32.jsp. Accessed November 11, 2002.Google Scholar
  45. Phillips, S.J. and Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, no. 2, pp. 161–175.CrossRefGoogle Scholar
  46. Phillips, S.J., Dudík, M., and Schapire, R.E., A maximum entropy approach to species distribution modeling, in Proceedings of the 21st International Conference on Machine Learning, New York: ACM Press, 2004.Google Scholar
  47. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, nos. 3–4, pp. 231–259.CrossRefGoogle Scholar
  48. Pierce, S.J. and Bennett, M.B., Validated annual, bandpair periodicity and growth parameters of blue-spotted maskray Neotrygon kuhlii from south-east Queensland, Australia, J. Fish Biol., 2009, vol. 75, no. 10, pp. 2490–2508.PubMedCrossRefGoogle Scholar
  49. Pierce, S.J., Pardo, S.A., and Bennett, M.B., Reproduction of the blue-spotted maskray Neotrygon kuhlii (Myliobatoidei: Dasyatidae) in south-east Queensland, Australia, J. Fish Biol., 2009, vol. 74, no. 6, pp. 1291–1308.PubMedCrossRefGoogle Scholar
  50. Pitcher, C.R., Doherty, P., Arnold, P., et al., Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area, AIMS/CSIRO/QM/QDPI CRC Reef Research Task Final Report, 2007a.Google Scholar
  51. Pitcher, C.R., Haywood, M., Hooper, J., et al., Mapping and characterisation of key biotic and physical attributes of the Torres Strait ecosystem, CSIRO/QM/QDPI CRC Torres Strait Task Final Report, 2007b.Google Scholar
  52. Ridgway, K.R., Dunn, J.R., and Wilkin, J.L., Ocean Interpolation by Four-Dimensional Weighted Least Squares — Application to the Waters around Australasia, J. Atmos. Ocean. Tech., 2002, vol. 19, no. 9, pp. 1357–1375.CrossRefGoogle Scholar
  53. Schröder, B. and Reineking, B., Modellierung der Art-Habitat-Beziehung — ein Überblick über die Verfahren der Habitatmodellierung, in Habitatmodelle — Methodik, Anwendung, Nutzen. Tagungsband zum Workshop vom 8–10 Oktober, 2003 am UFZ Leipzig, UFZ-Berichte 9/2004, Dormann, C.F., Blaschke, T., Lausch, A., Schrïder, B., and Söndgerath, D., Eds., Leipzig: Eigenverlag UFZ, 2004.Google Scholar
  54. Schröder, B. and Richter, O., Are habitat models transferable in space and time? J. Nat. Conserv., 1999, vol. 8, no. 4, pp. 195–205.Google Scholar
  55. Stobutzki, I.C., Miller, M.J., Heales, D.S., and Brewer, D.T., Sustainability of elasmobranchs caught as bycatch in a tropical prawn (shrimp) trawl fishery, Fish. Bull., 2002, vol. 100, no. 4, pp. 800–821.Google Scholar
  56. Strau, B., Habitatmodelle zur Prognose der Vorkommen phytophager Insekten in Mosaikzyklen, BSc (Hons) Thesis, Oldenburg: Carl von Ossietzky University, 2002.Google Scholar
  57. Systat Software, Inc., SigmaPlot 12.0, Chicago: Systat Software, 2011.Google Scholar
  58. ter Braak, C.J.F. and Looman, C.W.N., Weighted averaging, logistic regression and the Gaussian response model, Vegetatio, 1986, vol. 65, no. l, pp. 3–11.CrossRefGoogle Scholar
  59. Thuiller, W. and Münkemüller, T., Habitat suitability modelling, in Effects of Climate Change on Birds, Møller, A.P., Fiedler, W., and Berthold, P., Eds., New York: Oxford Univ. Press, 2010.Google Scholar
  60. Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J.R., Presence-Only Data and the EM Algorithm, Biometrics, 2009, vol. 65, no. 2, pp. 554–563.PubMedCrossRefGoogle Scholar
  61. Ward, R.D., Holmes, B.H., White, W.T., and Last, P.R., DNA barcoding Australasian Chondrichthyans: results and potential uses in conservation, Mar. Freshwater Res., 2008, vol. 59, no. 1, pp. 57–71.CrossRefGoogle Scholar
  62. Weigmann, S., Contribution to the taxonomy and distribution of eight ray species (Chondrichthyes, Batoidea) from coastal waters of Thailand, Proc. Soc. Nat. Sci., Hamb. 2011, vol. 46, pp. 249–312.Google Scholar
  63. Weigmann, S., Contribution to the Taxonomy and Distribution of Six Shark Species (Chondrichthyes, Elasmobranchii) from the Gulf of Thailand, ISRN Zool., 2012, vol. 2012, Article ID 860768.Google Scholar
  64. White, W.T. and Dharmadi, Species and size compositions and reproductive biology of rays (Chondrichthyes, Batoidea) caught in target and non-target fisheries in eastern Indonesia, J. Fish. Biol., 2007, vol. 70, no. 6, pp. 1809–1837.CrossRefGoogle Scholar
  65. Wintle, B.A., Elith, J., and Potts, J.M., Fauna habitat modelling and mapping: a review and case study in the Lower Hunter Central Coast Region of NSW, Austral Ecol., 2005, vol. 30, no. 7, pp. 719–738.CrossRefGoogle Scholar
  66. Wisz, M.S. and Guisan, A., Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data, BMC Ecol., 2009, vol. 9, no. 8.Google Scholar
  67. Zaniewski, A.E., Lehmann, A., and Overton, J.M., Predicting species distribution using presence-only data: a case study of native New Zealand ferns, Ecol. Model., 2002, vol. 157, nos. 2–3, pp. 261–280.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Biocenter Grindel and Zoological MuseumUniversity of HamburgHamburgGermany

Personalised recommendations