Journal of Ichthyology

, Volume 51, Issue 11, pp 1035–1103 | Cite as

Tactile reception and behavior of fish

  • A. O. KasumyanEmail author


Available fragmentary data on tactile sensie of fish are summed up for the first time. Data are presented on morphology and distribution of tactile receptors (free nerve endings, Merkel cells, Rohon-Beard cells, etc.) and on their innervation. Main tactile organs of fish are considered—barbels and various other cutaneous outgrowths, free rays of fins, rostrum, breeding tubercles, dermal teeth. Information is presented on functional parameters of tactile reception and its significance in orientation and in manifestation by fish of reproductive, defensive, social, exploratory, and food searching behavior. An important role is shown of the intraoral tactile reception in estimation by fish of texture and attractiveness of food objects. Time of formation of tactile sensitivity in fish ontogenesis is indicated and dynamics of its formation is analyzed. A low level of knowledge of structure and function of the tactile system is noted. The majority of the available data are mostly facts indicating the importance of tactile sense in various life manifestations of fish but not disclosing the functional potential of the system.


fishes tactile sense tactile receptors tactile organs free nerve endings Merkel cells behavior ontogenesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R.D., and Reinhardt, U.G., Effects of Texture on Surface Attachment of Spawning-Run Sea Lampreys Petromyzon marinus: a Quantitative Analysis, J. Fish Biol., 2008, vol. 73, pp. 1464–1472.CrossRefGoogle Scholar
  2. Afavasiev, M., On Nerve Endings in Tactile Orangs in Fish, Zapiski Imperatorskoi Akademii Nauk, 1875, vol. 25, Append. 8, pp. 1–24.Google Scholar
  3. Agarwal, V.P. and Rajbanshi, V.K., Morphology and Histology of the Cutaneous Sense Organs of Mystus vittatus (Bl.), Proc. India Acad. Sci. B, 1965, vol. 61, pp. 39–48.Google Scholar
  4. Allaby, M., A Dictionary of Zoology, Oxford: Oxford Univ., 1999.Google Scholar
  5. Amorim. M.C.P. and Hawkins, A.D., Crowling for Food: Acoustic Emission during Competitive Feeding of the Streaked Gurnard, J. Fish Biol., 2000, vol. 57, pp. 895–907.CrossRefGoogle Scholar
  6. Andriashev, A.P., The Role of Sense Organs in Food Search in Rockling, Zh. Obshchei Biol., 1944a, vol. 5, no. 2, pp. 123–127.Google Scholar
  7. Andriashev, A.P., Methods of Food Search in Mullet Mullus barbatus ponticus, Zh. Obshchei Biol., 1944b, vol. 5, no. 3, pp. 193–196.Google Scholar
  8. Andriashev, A.P., Ryby severnykh morei SSSR (The Fishes of Northern Seas of the USSR), Moscow-Leningrad: AN SSSR, 1954 [in Russian].Google Scholar
  9. Andriashev, A.P., The Role of Sense Organs in Food Searching in Fish, Trudy soveshchaniya po metodike izucheniya kormovoi bazy i pitaniya ryb (Proceedings of the Conference on Methiods of Investigation of Food Resources and Foraging of Fish), Moscow: AN SSSR, 1955, pp. 135–142.Google Scholar
  10. Appelbaum, S. and Schemmel, Ch. Dermal Sense Organs and Their Significance in the Feeding Behavior of the Common Sole Solea vulgaris, Mar. Ecol. Progr. Ser., 1983, vol. 13, pp. 29–36.CrossRefGoogle Scholar
  11. Arnal, C. and Côté, I.M., Interaction between Cleaning Gobies and Territorial Damselfish on Coral Reefs, Anim. Behav., 1998, vol. 55, pp. 1429–1442.PubMedCrossRefGoogle Scholar
  12. Arnold, G.P., The Orientation of Plaice Larvae (Pleuronectes platessa L.) in Water Currents, J. Exp. Biol., 1969, vol. 50, no. 3, pp. 785–801.PubMedGoogle Scholar
  13. Aronov, M.P., On External Gustatory Apparatus of Rockling, Nauchnye doklady vusshei shkoly, Biol., 1959, no. 4, pp. 38–41.Google Scholar
  14. Atema, J., Structures and Functions of the Sense of Taste in the Catfish, Brain Behav. Evol., 1971, vol. 4, pp. 273–294.PubMedCrossRefGoogle Scholar
  15. Baatrup, E. and Døving, K.B. Physiological Studies on Solitary Receptorrs of the Oral Disk Papillae in the Adult Brook Lamprey, Lamppetra planeri (Bloch), Chem. Senses, 1985, vol. 10. pp. 559–566.CrossRefGoogle Scholar
  16. Bailey, D.M., Wagner, H.J., Jamieson, A.J., et al., A Taste of the Deep-Sea: the Roles of Gustatory and Tactile Searching Behaviour in the Grenadier Fish Coryphaenoides armatus, Deer-Sea Research, part I: Oceanographic Research Papers, 2007, vol. 54, no. 1, pp. 99–108.CrossRefGoogle Scholar
  17. Baker, C.F. and Montgomery, J.C., The Sensory Basis of Rheotaxis in the Blind Mexican Cave Fish, Astyanax fasciatus, J. Comp. Physiol., 1999, vol. 184, pp. 519–527.CrossRefGoogle Scholar
  18. Balan, V.S. and Kasumyan, A.O., Investigation of Participation of Intraoral Mechanoreception and Regulation of Foraging Behavior in African Catfish Clarias gariepinus, Mater., III Int. Conf. “Recent Problems of Physiology and Biochemistry of Aquatic Organisms”, Petrozavodsk, 2010, pp. 8–9.Google Scholar
  19. Bardach, J.E., Winn, H.E., and Menzel, D.W., The Role of the Senses in the Feeding of Nocturnal Reef Predators Gymnothorax moringa and G. vicinus, Copeia, 1959, no. 2, pp. 133–139.Google Scholar
  20. Bardach, J.E. and Loewenthal, L.A., Touch Receptors in Fishes with Special Reference to the Moray Eels (Gymnothorax vicinus and G. moringa), Copeia, 1961., no.1. pp. 42–46.Google Scholar
  21. Bardach, J.E. and Case, J. Sensory Capabilities of the Modified Fins of Squirrel Hake (Urophycos chuss) an Searibins (Prionotus carolinus and P. evolans), Copeia, 1965, no. 2, pp. 194–206.Google Scholar
  22. Bardach, J.E., Todd, J.H., and Crickmer, R.K., Orientation by Taste in Fish of Genus Ictalurus, Science, 1967, vol. 155, pp. 1276–1278.PubMedCrossRefGoogle Scholar
  23. Barry, M.A. and Bennett, M.V.L., Specialized Lateral Line Receptor Systems in Elasmobranch: the Spiracular Organs and the Vesicles of Savi, The Mechanosensory Lateral Line—Neorbiology and Evolution, Coombs, S., Görner, P., Münz, H., Eds., New York: Springer, 1989, pp. 591–606.CrossRefGoogle Scholar
  24. Bartheld, C.S. and Meyer, D.L., Trigenimal and Facial Innervation of Cirri in Three Teleost Species, Cell Tissue Res., 1985, vol. 241, pp. 615–622.CrossRefGoogle Scholar
  25. Basov, B.M., Behavior of Sterlet Acipenser ruthenus and Russian Sturgeon A. gueldenstaedti in Low-Frequency Electric Fields, Vopr. Ikhtiol., 1999, vol. 39, no. 6, pp. 819–824 [J. Ichthyol. (Engl. Transl.), 1999, vol. 39, no. 9, pp. 782–787].Google Scholar
  26. Bastakov, V.A., Dyachkova, L.N., and Manteifel, Yu.B., Special Traits of Behavior and of Morph-Functional Organization of the Visual System in Juveniles of Russian Sturgeon Acipenser guldenstadti Brandt, Povedenie ryb (Fish Behavior), Moscow: IEMEZh AN SSSR, 1981, pp. 46–80.Google Scholar
  27. Bate-Smith, E.C., Astringency in Foods, Food Processing and Packaging, 1954, vol. 23, pp. 124–127.Google Scholar
  28. Bateson, W.M.A., The Sense-Organs and Perception of Fishes; wit Remarks on the Supply of Bait, J. Mar. Assoc. UK, 1890, vol. 1, pp. 225–256.CrossRefGoogle Scholar
  29. Bauer, R., Untersuchungen zur Entladingstätigkeit und zum Beutefangverhalten des Zitterseldses Malapterurus electricus Gmelin 1789 (Siluroidea, Malapteruridae, Lacép. 1803), Z. Vergl. Physiol., 1968, vol. 59, pp. 371–402.CrossRefGoogle Scholar
  30. Baumgarten, R.J., von Baldrighi, G., and Shilinger, G.L., Vestibular Behavior of Fish during Diminished g-Force and Weightlessness, Aerospace Med., 1972, vol. 43, no. 6, pp. 626–632.Google Scholar
  31. Beard, J., The History of a Transient Nervous Apparatus in Certain Ichthyospida, Zool. Jb., 1896, vol. 9, pp. 319–426.Google Scholar
  32. Beebe, W., Deep-Sea Stomiatoid Fishes. One New Genus and Eight New Species, Copeia, 1933, no. 4, pp. 160–175.Google Scholar
  33. Beebe, W. and Crane, J., Deep-Sea Fishes of the Bermuda Oceanographic Expeditions. Family Melanostomitidae, Zoologica, New York, 1939, vol. 24, pp. 65–238.Google Scholar
  34. Belling, D.E., Der Bau der vorderen paaringen Extremitfiten und des Schultergirtels der Trigla im Zuzammenhang mit dem Bau entsprchender Organe bei anderenTeleostei, Bull. Soc. Imp. Nat. Moscou, Année 1911, 1913, Nouvelle sér., vol. 25, pp. 46–92.Google Scholar
  35. Belousova, T.A., Devitsyna, G.V., and Malyukina, G.A., Electophysiological Investigation of Functional Characteristics of the Olfactory System in Cod, Nauchnye Doklady Vysshei Shkoly, Biol., 1978, no. 6, pp. 73–78.Google Scholar
  36. Bennett, W.R., Edmnondson, G., Williamson, K., and Gelley, L. An Investigation of the Substrate Preference of White Sturgeon (Acipenser transmontanus) eleutheroembryos, J. Appl. Ichthyol., 2007, vol. 23, pp. 539–542.CrossRefGoogle Scholar
  37. Bernays, E.A., Cooper Driver, G., and Bilgener, M., Herbivores and Plant tannins, Adv. Ecol. Res., 1989, vol. 19, pp. 263–302.CrossRefGoogle Scholar
  38. Bernhardt, R.R., Chitnis, A.B., Lindamer, L., and Kuwanda, J.Y., Identification of Spinal Neurons in the Embryonic and Larval Zebrafish, J. Comp. Neur., 1990, vol. 302, pp. 603–616.PubMedCrossRefGoogle Scholar
  39. Best, A.C.G. and Whitear, M. Epidermal Tags in Clupeid Fishes, J. Mar. Biol. Assoc. UK, 1987, vol. 67, no. 1, pp. 135–143.CrossRefGoogle Scholar
  40. Biedenbach, M.A., Functional Properties of Barbel Mechanoreceptors in catfish, Brain Res., 1971, vol. 27, pp. 36–364.Google Scholar
  41. Biedenbach, M.A., Functional Properties and Projection Areas of Cutaneous Receptors in Catfish, J. Comp., Physiol., 1973, vol. 84, pp. 227–250.CrossRefGoogle Scholar
  42. Bond, C.E., Biology of Fishes, Philadelphia: W,B, Saunders, 1979.Google Scholar
  43. Bone, Q. and Chubb, A.D., The Structure of Stretch Receptor Ending in the Fin Muscles of Rays, J. Mar. Biol. Ass. UK, 1975, vol. 55, no. 4, pp. 939–943.CrossRefGoogle Scholar
  44. Bone, Q., Marshall, N.B., and Baxter, J.H.S., Biology of Fishes, Gladgow: Chapman and Hall, 1995.Google Scholar
  45. Borri, C., L’apparecio labiale dei petromizonti, Atti della Soc. Toscana di Sci, Naturali, 1922, vol. 34, pp. 249–316.Google Scholar
  46. Boucher, Y., Simons, C.T., Faurion, A., et al., Trigeminal Modulation of Gustatory Neurons in the Nucleus of the Solitary Tract, Brain Res., 2003, vol. 973, pp. 265–274.PubMedCrossRefGoogle Scholar
  47. Brawn, V.M., Reproduction Behaviour of the Cod (Gadus callarias L.), Baheviour, 1961, vol. 18, pp. 177–197.CrossRefGoogle Scholar
  48. Bres, M., The Behaviour of Sharks, Res. Fish Biol. Fisheries, 1993, vol. 3, pp. 133–159.CrossRefGoogle Scholar
  49. Breslin, P.A.S., Multi-Modal Sensory Integration: Evaluating Foods and Mates, Sensory Perception, 2008, vol. 1, pp. 92–94.CrossRefGoogle Scholar
  50. Breslin, P.A.S., Gilmore, M.M., Beauchamp, G.K., and Green, G., Physiological Evidence that Oral Astringency is a Tactile Sensation, Chem. Senses, 1993, vol. 18, pp. 405–417.CrossRefGoogle Scholar
  51. Breslin, P.A.S. and Huang, L., Human Taste: Peripheral Anatomy, Taste Transduction, and Coding, Adv. Ororhinolaryngol., 2006, vol. 63, pp. 152–190.Google Scholar
  52. Bromley, P.J., Methods of Weaning Juvenile Hatchery Reared Sole (Solea solea [L.]) from Live Food to Prepared Diets, Aquaculture, 1977, vol. 12, pp. 337–347.CrossRefGoogle Scholar
  53. Bruch, R.M. and Binkowski, F.P., Spawning Behavior of Lake Sturgeon (Acipenser flavescens), J. Appl. Ichthyol., 2002, vol. 18, pp. 570–579.CrossRefGoogle Scholar
  54. Bruton, M.N., The Breedig Bilogy and Early Development of Clarias gariepinus (Pisces: Clariidae) in Lake Sibaya, South Africa, with a Review of Breeding in Species of the Subgenus Clarias (Clarias), Trans. Zool. Soc. London, 1979a, vol. 35, part 1, pp. 1–45.CrossRefGoogle Scholar
  55. Bruton, M.N., The Food and Feeding Behaviour of Clarias gariepinus (Pisces: Clariidae) in Lake Sibaya, South Africa, with Emphasis on Its Role as a Predator of Cichlids, Trans. Zool. Soc. London, 1979b, vol. 35, part 1, pp. 47–114.CrossRefGoogle Scholar
  56. Bshary, R. and Würth, M,. Cleaner Fish Labroides dimidiatus Manipulate Client Fish by Providing Tactile Stimulation, Proc. Royal Soc. London, B, 2001, vol. 268, pp. 1495–1501.CrossRefGoogle Scholar
  57. Buckley, J.L., and Kynard, B., Habitat Use an Behavior of Pre-Spawning and Spawning Shortnose Sturgeon, Acipenser brevirostrum in the Connecticut River, North American Sturgeons, Binkowski, F.P. and Doroshov, S., Eds., Dordrecht, Netehrlands: Junk, 1985, pp. 111–117.Google Scholar
  58. Callan, J.I. and Sanderson, S.L., Feeding Mechanism in Carp: Crossflow Filtration, Palatal Protrusions, and Flow Reversals, J. Exper, Biol., 2003, vol. 206, pp. 883–892.CrossRefGoogle Scholar
  59. Castro, W.T., Bibucis, P.M., and Overstrom, N.A., The Reproductive Biology of the Chain Dogfish, Scyliorhinus rotifer, Copeia, 1988, no. 3, pp. 740–746.Google Scholar
  60. Chanas, B. and Pawlik, J.R. Defences of Caribbean Sponges aganist Predatory Reef Fish. II. Spicules, Tissue Toughness, and Nutritional Quality, J. Exp. Mar. Biol. Ecol., 1995, viol. 127, pp. 195–211.Google Scholar
  61. Chemical Senses, Green. B.G., Mason, J.R., and Kare, M.R., Eds., vol. 2, Irritation, New York: Marcel Dekker, 1990.Google Scholar
  62. Cheney, K.L., Bshary, R., and Grutter, A.S., Cleaner Fish Cause Predators to Reduce Aggression toward Bystanders at Cleaning Station, Behav. Ecol., 2008, vol. 19, no. 5, pp. 1063–1067.CrossRefGoogle Scholar
  63. Chervova, L.S., Electrophysiological Investigation of the Trigeminal Nerve Innervating the Olfactory Organ of the White Sea Cod Gadus morhua marisalbi Derjugin, Vopr. Ikhtiol., 1985, vol. 24, no. 4, pp. 694–697.Google Scholar
  64. Chervova, L.S., Pain Sensitivity and Behavior of Fishes, Vopr. Ikhtiol., 1997, vol. 37, no. 1, pp. 106–111 [J. Ichthyol. (Engl. Transl.), 1997, vol. 37, no. 1, pp. 98–102.Google Scholar
  65. Chervova, L.S., Behavioral Reaction of Fishes to Pain Stimuli, J. Ichthyol., 2000, vol. 40, no. 8, Suppl. 2, pp. S287–S290.Google Scholar
  66. Chervova, L.S. and Malyukina, G.A., On Special Traits of Morphological and Functional Organization of the System of Trigeminal Nerve of Fish, Signalizatsiya i povedenie ryb (Signaling and Behavior of Fish), Akoev, G.N., Muraveiko, V.M., and Chinarina, A.D., Eds., Apatity: Kol. Fil AN SSSR, 1985, pp. 73–77.Google Scholar
  67. Chervova, L.S., Belousova, T.A., Devitsyna, G.V., and Malyukina, G.A., On Functional Characteristic of the System of Trigeminal Nerve of Fish, Vestnik Moskovskogo Universiteta, Biol., 1989. No. 1, pp. 18–23.Google Scholar
  68. Childress, J.J. and Meek, R.P., Observations on te Feeding Behavior of a Mesopelagic Fish (Anoplogaster cornuta; Beryciformes), Copeia, 1973, no. 3, pp. 602–603.Google Scholar
  69. Chu, Y.T. and Wen, M.C., A Study of the Lateral Line Canal System and that of Lorenzini Apmullae and Tubules of Elasmobranchiate Fishes of China, Monograph of Fishes of China, Shanghai, Chin: Academic Press, 1979Google Scholar
  70. Clarke. J.D., Hayes, B.P., Hunt, S.P., and Roberts, A., Sensory Physiology, Anatomy, and Immunochemistry of Rohon-Beard Neurones in Embryos of Xenopus laevis, J. Physiol., 1984, vol. 348, pp. 511–525.PubMedGoogle Scholar
  71. Cochran, P.A., Burbot (Lota lota) Barbels and the Evolution of Regenerative capabilities, Copeia, 1987, no. 2, pp. 515–516.Google Scholar
  72. Communication in Fishes, vols. 1–2, Ladich, F., Collin, S., Moller, P, and Kapoor, B.G., Eds., Einfield: Sci. Publ., 2006.Google Scholar
  73. Cook, R.D., Holowood, T.A., Linforth, R.S.T., and Taylor, A.J., Oral Shear Stress Predicts Flavour Perception in Viscous solutions, Chem. Senses, 2003, vol. 28, pp. 11–23.PubMedCrossRefGoogle Scholar
  74. Cook, R.D., Hilliard, R.W., and Potter, I.C., Oral Papillae of Adults of the Southern Hemisphere Lamprey Geotria australis, J. Morphol., 1990, vol. 203, pp. 87–96.CrossRefGoogle Scholar
  75. Côté, I.M., The Evolution and Ecology of Cleaning Symbioses in the Sea, Mar. Biol. Oceanogr. Annual. Rev., 2000, vol. 38, pp. 311–355.Google Scholar
  76. Côté, I.M. and Cheney, K.L., A Protective Function for Aggressive Mimicry? Proc. Royal Soc. London, B, Biol, Sci., 2007, vol. 274, pp. 2445–2448.CrossRefGoogle Scholar
  77. Crawford, J.D., Hagedorn, M., and Hopkins, C.D., Acoustic Communication in the Electric Fish, Pollimirus isidori (Mormyridae), J. Comp. Physiol., A, 1986, vol. 159, pp. 297–310.CrossRefGoogle Scholar
  78. Davenport, C.J. and Caprio, J., Taste and Tactile Recordings from the Ramus Recurrens Facialis Innervating Flank Taste Buds in the Catfish, J. Comp. Phsiol., 1982, vol. 147, pp. 217–229.CrossRefGoogle Scholar
  79. Debelius, H., Mediterranean and Atlantic Fish Guide: from Spain to Turkey, from Norway to South Africa, Frankfurt; UKAN Unterwasserarchiv, 1997.Google Scholar
  80. Devitsyna, G.V., On the Chemosensory and Tactile Provision of Feeding Behavior of Codfishes of the White Sea, Vopr. Ikhtiol., 1997, vol. 37, no. 1, pp. 94–100 [J. Ichthyol. (Engl. Transl.), 1997, vol. 37, no. 1, pp. 87–92].Google Scholar
  81. Devitsyna, G.V. and Malyukina, G.A., On Functional Organization of the Olfactory Organ in Macro- and Microsomatic Fish, Vopr. Ikhtiol., 1977, vol. 17, no. 3, pp. 493–502.Google Scholar
  82. Devitsyna, G.V. and Belousova, T.A., On Participation of the Trigeminal System in Perception of Odoriferous Substances, Vopr. Ikhtiol., 1978, vol. 18, no. 1, pp. 131–137.Google Scholar
  83. Devitsyna, G.V., Belousova, T.A., and Malyukina, G.A., Sensory Functions of the Trigeminal System in Connection with the Olfactory Reception in the White Sea Cod, Nauchnye doklady vysschei shkoly, Biol., 1981, no. 5, pp. 52–58.Google Scholar
  84. Devitsyna, G.V. and Golovkina, T.V., Gustatory Apparatus of the Oropharyngeal Cavity in Juveniles of Rainbow Trout Parasalmo mykiss, Vopr. Ikhtiol., 2011, vol. 51, no. 1, pp. 113–123.Google Scholar
  85. Dijkgraaf, S., Untersuchungen über die Funktion der Seitenogane an Fischen, Z. Vergl. Physiol., 1933, vol. 20, no. 1, pp. 162–214.CrossRefGoogle Scholar
  86. Dill, L.M. and Northcote, T.G., Effects of Some Environmental Factors on Survival, Condition, and Timing of Emergence of Chum Salmon Fry (Oncorhynchus keta), J. Fish. Res. Board Canada, 1970, vol.27, no. 1, pp. 196–201.CrossRefGoogle Scholar
  87. Disler, N.N., Ecologo-Morfological Traits of Development of Sense Organs of the Lateral Line System in Issyk-Kul Schmidt Dace and Verkhovka, Tr. Instituta morfologii zhivitnykh AN SSSR, 1953, no. 10, pp. 139–177.Google Scholar
  88. Disler, N.N., Organy chuvstv sistemy bokovoi linii i ikh znachenie v povednii ryb (Sense Organs of the Lateral Line System and Their Significance in Fish Behavior), Moscow: AN SSSR, 1960 [Engl. Transl. Israeli Progr.].Google Scholar
  89. Dizon, A.E., Stevens, E.D., Neill, W.H., and Magnuson, J.J., Sensitivity of Restrained Skipjack Tuna (Katzuwonus pelamis) to Abrupt Increases in Temperature, Comp. Biochem. Physiol., 1974, vol. 49A, pp. 291–299.CrossRefGoogle Scholar
  90. Dodd, J. and Kelly, J.P., Trigeminal system, Principles of Neural Science, Kandel, E.R., Schwartzm J.H., and Jessel, T.M., Eds., New York: Elsevier, 1991, pp, 367–384.Google Scholar
  91. Dogiel, A.S., Ueber die Nervenendigungen in den Geschmacks-Endknospen der Ganoideen, Arch. Mikr. Anat., 1897, vol. 49, pp. 769–790.CrossRefGoogle Scholar
  92. Dugatkin, A.A. and Godin, J.-G., Prey Approaching Predators: a Cost-Benefit Perspective, Ann. Zool. Fennici, 1992, vol. 29, pp. 233–252.Google Scholar
  93. Døving, K.B. and Seiset, R., Behavior Patterns in Cod Released by Electrical Stimulation of Olfactory Tract Bundles, Science, 1980, vol. 207, pp. 559–560.PubMedCrossRefGoogle Scholar
  94. Eakin, R.R., Eastman, J.T., and Jones, C.D., Mental Barbel Variation in Pogonophryne scotti Regan (Pisces: Perciformes: Artedidraconidae), Antarct. Sci., 2001, vol. 13, pp. 363–370.CrossRefGoogle Scholar
  95. Eakin, R.R., Eastman, J.T., and Vacci, M., Sexual Dimorphism and mental barbell Struture in the South Georgia Plundefish Artedidraco mirus (Perciformes: Notothenioidei: Artedidraconidae), Polar Biol., 2006, vol. 30, pp. 45–52.CrossRefGoogle Scholar
  96. Eastman, J.T., and Eakin, R.R., Mental Barbel and Meristic Variation in the Antarctic Notothenioid Fish Dolloidraco longedorsalis (Perciformes: Artedidraconidae) from the Ross Sea, Polar Biol., 2001, vol. 24, pp. 729–734.CrossRefGoogle Scholar
  97. Eastman, J.T., and Lannoo, M.J., Anatomy and Histology of the Brain and Sense Organs of the Antarctic Plunderfish Dolloidraco longedorsalis (Perciformes: Notothenioidei: Artedidraconidae), with Comments on the Brain Morphology of Other Artedidraconids and Closely Related Harpagifers, J. Morphol., 2003, vol. 255, pp. 358–377.PubMedCrossRefGoogle Scholar
  98. Ebrahimzadeh Mousavi, H., Vajhi, A.R., Hosseini, F., et al., Non-Surgical Removal of Some Stones from a Red Tailed Catfish (Phractocephalus hemiliopterus) Stomach as Gastric Foreign Bodies, Iranian J. Fish. Sci., 2006, vol. 6, no. 1, pp. 35–42.Google Scholar
  99. Egami, N., Geographic Variation in the Male Characters of the Fish, Oryzias latipes, Annot. Zool. Jpn., 1954, vol. 27, no. 1, pp. 7–12.Google Scholar
  100. Egami, N. and Minoru, N., Factors Initiating Mating and Oviposition in the Fish, Oryzias latipes, J. Fac. Sci. Univ. Tokyo, 1961, Section 4, vol. 9, part 2,pp. 263–278.Google Scholar
  101. Emery, A.R., Preliminary Comparisons of Day and Night Habits of Freshwater Fish in Ontario Lakes, J. Fish. Res. Board Canada, 1973, vol. 30, no. 6, pp. 761–774.CrossRefGoogle Scholar
  102. Essick, G.K., Chen, C.C., and Kelly, D.G., A Letter-Recognition Task to Assess Lingual Tactile Acuity, J. Oral Maxillofac. Surg., 1999, vol. 57, pp. 1324–1330.PubMedCrossRefGoogle Scholar
  103. Evseenko, S.A. and Pobalkova, D. Yu., On Breeding Tubercles on Scales of White Sea Cod Gadus morhua marisalbi Derjugin, with Notes on Its Taxonomic Status Vopr. Ikhtiol., 2001, vol. 41, no. 2, pp. 149–158 [J. Ichthyol. (Engl. Transl.), 2001, vol. 41, no. 3, pp. 183–191.Google Scholar
  104. Evseenko, S.A., Lorel, B., Braun, D.A., and Malikova, D. Yu., On the Gadus Taxonomy: Ontogenetic Evidence, Vopr. Ikhtiol., 2006, vol. 46, no. 3, pp. 326–333. Ichthyol. (Engl. Transl.), 2006, vol. 46, no. 5, pp. 351–358.Google Scholar
  105. Felsenfeld, A.L., Walker, C., Westerfield, M., et al., Mutations Affecting Skeletal Muscle Myofibril Structure in the Zebrafish, Development, 1990, vol. 108, pp.443–459.PubMedGoogle Scholar
  106. Finger, T.E., Gustatory Pathways in the Bullhead Catfish. I. Connections of the Anterior Ganglion, J. Compar. Neurol., 1976, vol. 165, pp. 513–526.CrossRefGoogle Scholar
  107. Finger, T.E., Gustatory Pathways in the Bullhead Catfish. II. Facial Lobe connections, J. Comp. Neurol., 1978, vol. 180, pp. 691–705.PubMedCrossRefGoogle Scholar
  108. Finger, T.E., Sensorimotor Mapping and Oropharyngeal Reflexes in Goldfish, Carassius auratus, Brain, Behav. Evol., 1988, vol. 31, pp. 17–24.CrossRefGoogle Scholar
  109. Finger, T.E., Evolution of Taste and Solitary Chemosensory Cell Systems, Brain, Behav. Evol., 1997, vol. 50, pp. 234–243CrossRefGoogle Scholar
  110. Finger, T.E. and Böttger, B., Transcellular Labelling of Taste Bud Cells by Carbocyanine Dye (dil) Applied to Peripheral Nerves in the Barbels of the Catfsh, Ictalurus punctatus, J. Compar. Neurol., 1990, vol. 302, pp. 884–892.CrossRefGoogle Scholar
  111. Foster, R.N., Trends in the Evolution of Reproductive Behavior in Killifishes, Studies Trop. Oceanogr., 1967, no. 5, pp. 549–566.Google Scholar
  112. Fox, H., Barbels and Barbel-Like Tentacular Structures in Sub-Mammalian Vertebrates: a Review, Hydrobiologia, 1999, vol. 403, pp. 153–193.CrossRefGoogle Scholar
  113. Fox, H., Lane, B, and Whitear, M., Sensory Nerve Endings and Receptors in Fish and Amphibians, The Skin of Vertebrates, Spearman, R.I.C., Riley, P.A., Eds., Linnean Society Symposium Series, no. 9, London: Academic Press, 1980, pp. 271–282.Google Scholar
  114. Gartner, J.V., Jr., Crabtree, R.E., and Sulak, K.J., Feeding at the Depth, Deep-Sea Fishes, Randall, D.J. and Farrell, A.P., Eds., San Diego: Academic Press, 1997, pp. 115–193.CrossRefGoogle Scholar
  115. Gerhart, D.J., Rittschof, D., and Mayo, S.W., Chemical Ecology and the Search for Marine Antifoulants, J. Chem. Ecol., 1988, vol. 14, pp. 1905–1917.CrossRefGoogle Scholar
  116. Gibson, R.N. and Robb, L., The Relationship between Body Size, Sediment Grain Size, and the Burying Ability of Juvenile Place, Pleuronectes platesa L, J. Fish Biol., 1992, vol. 40, pp. 771–778.CrossRefGoogle Scholar
  117. Gill, A.B. and Hart, P.J.B., Feeding Behaviour and Prey Choice of the Threespine Stickleback: the Interacting Effects of Prey Size, Fish Size, and Stomach Fullness, Anim. Behav., 1994, vol. 47, pp. 921–932.CrossRefGoogle Scholar
  118. Girsa, I.I., Osveshchennost’ i povedenie ryb (Illumination and Fish Behavior), Moscow: Nauka, 1981 [in Russian].Google Scholar
  119. Glendinning, J.I., Effect of Salivary Proline-Rich Protein on Ingestive Responses to Tannic Acid in Mice, Chem. Sensesm., 1992, vol. 17, pp. 1–12.CrossRefGoogle Scholar
  120. Glendinning, J.I., How do Predators Cope with Chemically Defended Foods? Biol. Bull., 2007, vol. 213, pp. 252–266.PubMedCrossRefGoogle Scholar
  121. Gomahr, A., Palzenberger, M., and Kotrschal, K., Density and Distribution of External Taste Buds in Cyprinids, Environm. Biol. Fish, 1992, vol. 33, nos. 1–2, pp. 125–134.CrossRefGoogle Scholar
  122. Granato, V., van Eeden, F.J.M., Schach, U., et al., Genes Controlling and Meditating Locomotion Behavior of the Zebrafish Embryo and Larva, Development, 1996, vol. 123, pp. 399–413.PubMedGoogle Scholar
  123. Gray, J. and Sand, A., The Locomotory Rhythm of the Dogfish (Scyllium canicula), J. Exp. Biol., 1936, vol. 13, pp. 200–209.Google Scholar
  124. Green, B.G., Studying Taste as a Cutaneous Sense, Food Quality and Preference, 2002, vol. 14, pp. 99–109.CrossRefGoogle Scholar
  125. Gregory, R.W. and Fields, P.E., Discrimination of Low Water Velocities by Juvenile Silver (Oncorhynchus kisutch) and Chinook salmon (Oncorhynchus tschawytscha), Techn. Rept. Sch. Fish. Univ. Washington, 1962, vol. 52, pp. 1–58.Google Scholar
  126. Groot, S.J., de, On the Inter-Relation between Morphology of the Alimentary Tract, Food, and Feeding Behavior in Flatfishes (Pisces: Pleuronectiformes), Neth. J. Sea Res., 1971, vol. 5, pp. 121–196.CrossRefGoogle Scholar
  127. Grutter, A.S., Relationship between Cleaning Times and Ectoparasite Loads in Coral Reef Fishes, Mar. Ecol. Prog. Ser., 1995, vol. 118, pp. 51–58.CrossRefGoogle Scholar
  128. Grutter, A.S., Parasite Removal Rates by the Cleaner Wrasse Labroides dimidiatus,, Mar. Ecol. Prog. Ser., 1996, vol. 130, pp. 61–70.CrossRefGoogle Scholar
  129. Grutter, A.S., Parasite Infection Rather than Tactile Stimulation is the Proximate Cause of a Cleaning Behavior in Reef Fish, Proc. Royal Soc, London, B, 2001, vol. 268, pp. 1361–1365.CrossRefGoogle Scholar
  130. Grutter, A.S., Cleaner Fish Use Tactile Dancing Behavior as a Preconflict Management Strategy, Current Biol., 2004, vol. 14, pp. 1080–1083.CrossRefGoogle Scholar
  131. Göz, H., Über denArt- und Individual Geruch bei Fischen, Z. Vergl. Physiol., 1941, vol, 29, pp. 1–45.CrossRefGoogle Scholar
  132. Haeberle, H. and Lumpkin, E. Merkel Cells in Somatosensation, Chem. Perception, 2008, no. 1, pp. 110–118.Google Scholar
  133. Hahn, G., Ferntastsinn und Strömungsinn beim Augenlosen Höhlenfisch Anoptichthys jordani Hubbs und Innes im Vergleich zu Einigen Andren Teleosteern, Naturwissenschaften, 1960, vol. 47, no. 24, p. 611.CrossRefGoogle Scholar
  134. Halata, Z., Cooper, B.Y., Baumann, K.I., et al., Sensory Nerve Endings in the Hard Palate and Papilla Incisive of the Goat, Exp. Brain Res., 1999, vol. 129, pp. 218–228.PubMedCrossRefGoogle Scholar
  135. Halata, Z., Grim, M., Baumann, K.I., Friedrich Sigmund Merkel und his “Merkel Cell”, Morphology, Development, and Physiology: Review and New Results, Anatom. Rec., 2003, vol. 271A, pp. 225–239.CrossRefGoogle Scholar
  136. Hamann, W., Mammalian Cutaneous Mechanoreceptors, Prog. Biophys. Mol. Biol., 1995, vol. 64, pp. 81–104.PubMedCrossRefGoogle Scholar
  137. Hara, Y.J., Guatation, Fish Physiology, vol. 25, Sensory Systems Neuroscience, Hara, T.J. and Zielinski, B.S., Eds., New York: Elsevier, 2007, pp. 45–96.Google Scholar
  138. Harder, W., Die Beziehungen zwischen Electroreceptoren, ekektrischen Organen, Seitenlinienorganen und Nervesystem bei den Mormyridae (Teleistei, Pisces), Z. Vergl. Physiol., 1968, vol. 59, pp. 272–318.Google Scholar
  139. Hartschuh, W., Weine, E., and Reinecke, M., The Merkel Cell, Biology of the Integument, vol. 2, Vertebrates, Bereiteh-Nehn, J., Matolsky A.G., and Richards, K.S., Eds., Berlin: Springer, 1986, pp. 605–620.Google Scholar
  140. Harvell, C.D., Fenical, W., and Green, C.H., Chemical and Structural Defences of Caribbean Gorgonians (Pseudogorgonaria spp.). I. Development of an in situ Feeding Assay, Mar. Ecol. Prog. Ser., 1988, vol. 49, pp. 287–294.CrossRefGoogle Scholar
  141. Hawkins, A.D. and Amorim, M.C.P. Spawning Sounds of the Male Haddock, Melanogrammus aeflefinuis, Environ., Biol. Fishs., 2000, vol.59, pp. 29–41.CrossRefGoogle Scholar
  142. Hayama, T. and Caprio, J., Lobule Structure and Somatotopic Organization of the Medullary Facial Lobe in the Channel Catfish Ictalurus punctatus, J. Compar. Neurol., 1989, vol. 285, pp. 9–17.CrossRefGoogle Scholar
  143. Heard, W.R., Phototactic Behaviour of Emerging Sockeye Salmon Fry, Animal Behav., 1964, vol. 12, nos. 2–3, pp. 382–388.CrossRefGoogle Scholar
  144. Helfman, G.S., Collette, B.B., and Facey, D.E., The Diversity of Fishes, Malden: Blackwell Sci., 1997.Google Scholar
  145. Helfman, G.S., Collette, B.B., and Facey, D.E., Bowen, B.W., The Diversity of Fisher. Wiley-Blackwell, 2009.Google Scholar
  146. Hennmann, R.M. Sharks and Rays: Elasmobranch Guide of the World, Frankfurt: IKAN Unterwasserarchiv, 2001.Google Scholar
  147. Hensey, C. and Gautier, J., Programned Cell Death during Xenopus Development: a Spatio-Temporal Analysis, Dev. Biol., 1998, vol. 203, pp. 36–48.PubMedCrossRefGoogle Scholar
  148. Hernandez, L.P. and Motta, P.J., Trophic Concequences of Differential Performance: Ontogeny of Oral Jaw-Crushing Performance in the Sheepshead, Archosargus probatocephalus (Teleoistei, Sparidae), J, Zool., London, 1997, vol. 243, pp. 737–756.CrossRefGoogle Scholar
  149. Herrick, C.J., The Cranial Nerves and Cutaneous Sense Organs of the North American Siluroid Fishes, J. Comp. Neurol. Psychol., 1901, vol. 11, pp. 177–249.Google Scholar
  150. Herrick, C.J., The Organ and Sense of Taste in Fishes, Bull. US Comm., 1904, vol. 22, pp. 237–272.Google Scholar
  151. Herrick, C.J., The Central Gustatory Paths in the Brains of Bony Fishes, J. Comp. Neurol. Psychol., 1905, vol. 15, pp. 375–456.CrossRefGoogle Scholar
  152. Herrick, C.J., The Tactile Centers in the Spinal Cord and Brain of Sea Robin, Prionotus carolinus L., J. Comp. Neurol. Psychol., 1907, vol. 17, pp. 307–327.CrossRefGoogle Scholar
  153. Herrick, C.J., The Fasciculus Solitaries and Its Connections in the Amphibians and Fishes, J. Comp. Neurol., 1944, vol. 81, pp. 307–331.CrossRefGoogle Scholar
  154. Herter, K., Dressurversuche an Fischen, Z. Vegl. Physiol., 1929, vol. 10, no. 4, pp. 688–711.Google Scholar
  155. Herter, K., Die Fischdresuren und ihre sinnephysiologoschen Grundlagen, Berlin: Akademie-Verlag, 1953.Google Scholar
  156. Hoagland, H., Specific Nerve Impulses from Gustatory and Tactile Receptors in Catfish, J. Gen. Physiol., 1933, vol. 16, pp. 685–693.PubMedCrossRefGoogle Scholar
  157. Holland, K., Chemosensory Orientation to Food by a Hawaiian Goatfish (Parupeneus porphyreus, Mullidae), J. Chem. Ecol., 1978, vol. 4, no. 2, pp. 173–186.CrossRefGoogle Scholar
  158. Hoogerhound, R.J.C., Prey Processing and Predator Morphology in Molluscivorous Cichlid Fishes, Trends Vertebr. Morphol.: Proc. 2nd Int. Symp. Vertebr, Morphol., Stuttgart, 1989, pp. 19–21.Google Scholar
  159. Hoogland, R., Morris, D., and Tinbergen, N., The Spines of Sticklebacks (Gasterosteus and Pygosteus) as Means of Defense against Predators (Perca and Esox), Behaviour, 1956, vol. 10, pp. 311–338.CrossRefGoogle Scholar
  160. Iggo, A. and Muir, A.R., The Structure and Function of a Slowly Adapting Touch Corpuscle in Hairy Skin, J. Physiol., 1969, vol. 2000, pp. 763–796.Google Scholar
  161. Iles, R.B., External Sexual Differences and Their Importance in Mormyrus kannume Forskål, 1775, Nature, 1960, vol. 188, p. 516.Google Scholar
  162. Il’in, M.N., Akvariumnoe ribovodstvo (Acquarium fish culture), Moscow: Moscow University, 1968 [in Russia].Google Scholar
  163. Il’inskii, O.B., Physiology of Cutaneous Sensitivity, in Fiziologiya sensornykh system (Physiology of Sensory Systems), part 2, Leningrad: Nauka, 1972, pp. 30–56.Google Scholar
  164. Ishizaki, K., Sakurai, K., Tazaki, M., and Inoue, T. Response of Merkel Cells in the Palatal Rugae to the Continuous Mechamical Stimulation by Palatal Plate, Somatosens. Motor. Res., 2006, vol. 23,pp. 63–72.CrossRefGoogle Scholar
  165. Ivlev, V.S., Eksperimental’naya ekologiya pitaniya ryb (Experimental Ecology of Fish Feeding), Kiev: Naukova Dumka, 1977 [in Russian].Google Scholar
  166. Iwami, T., Numanami, H., and Naito, Y., Behavior of Three Species of the Family Artedidraconidae (Pisces, Nototheniidae), with Reference to Feeding, Proc. NIPR Polar. Biol., 1996, vol. 9, pp. 225–230.Google Scholar
  167. Jakubowski, M. and Whitear, M., Comparative Morphology and Cytology of Taste Buds in Teleosts, Z. Mikrosk. Anat. Forsch., 1990, vol. 104, pp. 529–560.Google Scholar
  168. Janssen, J., Responses of Antarctic Fishes to Tactile Stimuli, Antarctic J. US, 1992, vol. 27, pp. 142–143.Google Scholar
  169. Janssen, J., Use of the Lateral Line and Tactile Senses in Feeling in Four Antarctic Nototheniid Fishes, Environm. Biol. Fish., 1996, vol. 47, pp. 51–64.CrossRefGoogle Scholar
  170. Janssen, J., Slattery, M., and Jines, W.R., Locomotion and Feeding Responses to Mechanical Stimuli in Histiodraco velifer (Artedodraconidae), Copeia, 1993, no. 3, pp. 885–889.Google Scholar
  171. Jennings, M.J., Claussen, J.E., and Philipp, D.P., Evidence for Heritable Preferences for Spawning Habitat between Two Walleye Populations, Trans. Amer. Fish. Soc., 1996, vol. 125, pp. 978–982.CrossRefGoogle Scholar
  172. John, K.R., Observations on the Behavior of Blind and Blinded Fishes, Copeia, 1957, no. 1, pp. 123–132.Google Scholar
  173. Jordan, H., Rheotropic Responses of Epenephelus striatus Bloch, Amer. J. Physiol., 1971, vol. 43, pp. 438–454.Google Scholar
  174. Kanwal, J.S. and Caprio, J., An Electrophysiological Investigation of the Oro-Pharyngeal (IX–X) Taste System in the Channel Catfish, Ictalurus punctatus, J. Comp. Physiol., A, 1983, vol. 150, pp. 345–357.CrossRefGoogle Scholar
  175. Kanwal, J.S. and Caprio, J., Overlapping Taste and Tactile Maps of the Oropharynx in the Vagal Lobe of the Channel Catfish, Ictalurus punctatus, J. Neurobiol., 1988, vol. 19, pp. 211–222.PubMedCrossRefGoogle Scholar
  176. Kapoor, B.G., Evans, H.E., and Pevzner, R.A., The Gustatiry System in Fish, Advances Mar. Biol., 1975, vol. 13, pp. 53–108.CrossRefGoogle Scholar
  177. Karamchamdani, S.J. and Motvani, M.P., On the Larval Development of Four Species of Freshwater Catfishes from the River Ganga, J. Zool.Soc. India, 1956, vol. 8, pp. 1–34.Google Scholar
  178. Kasumyan, A.O., Olfaction and Taste Senses in Sturgeon Behavior, J. Appl. Ichthylogy, 1999, vol. 15, pp. 228–232.CrossRefGoogle Scholar
  179. Kasumyan, A.O., The Lateral Line in Fish: Structure, Function, and Role in Behavior, J. Ichthyology, 2003, vol. 43, Suppl. 2, pp. S 175–S213.Google Scholar
  180. Kasumyan, A.O., The Olfactory System in Fish: Structure, Function, and Role in Behavior, J. Ichthyology, 2004, vol. 44, Suppl. 2, pp. S180–S223.Google Scholar
  181. Kasumyan, A.O., Foraging Behavior: Estimation by Fish of Food Objects by Intraoral Reception, Meter. IV Conf. “Povedenie ryb” (Fish Behavior). Moscow: Akvaros, 2010, pp. 108–112.Google Scholar
  182. Kasumyan, A.O. and Ponomarev, V.Yu., A Possible Method of Fish Marking, Rybnoe Khozyaistvo, 1986, no. 2, pp. 40–42.Google Scholar
  183. Kasumyan, A.O. and Ponomarev, V.Yu., Significance of Chemoreception in Foraging Behavior of Cyprinids, in Khemochuvstvitelnost’ i khemokommunikatsiya ryb (Chemosensitivity and Chemocommunication of Fish), Moscow: Nauka, 1989, pp. 123–131.Google Scholar
  184. Kasumyan, A.O., Taufik, L.R., and Protsenko, Yu.V., Olfactory and Gustatory Sensitivity of Juveniles of Acipenserids to Amino Acids, in Biologicheskie osnovy industrialnogo osetrovodstva (Biological Foundations of Industrial Sturgeon Culture), Moscow: VNIRO, 1991, pp. 37–53.Google Scholar
  185. Kasumyan, A.O. and Kazhlaev, A.A., Behavioral Responses of Early Juveniles of Siberian Sturgeon Acipenser baeri and Starrec Sturheon A. stellatus (Acipenseridae) to Substances Causing Principal Types of Gustatory Feeling, Vopr. Ikhtiol., 1993, vol. 33, no. 3, pp. 427–436.Google Scholar
  186. Kasumyan, A.O. and Marusov, E.A., Behavioral Taste Response of the Minnow Phoxinus phoxinus (Cyprinidae) to Chemical Signals under Normal Conditions and after Acute and Chronic Anosmia, Vopr. Ikhtiol., 2002, vol. 42, no. 5, pp. 684–696 [J. Ichthyol. (Engl. Transl.), 2002, vol. 42, no. 8, pp. 659–670.Google Scholar
  187. Kasumyan, A.O., Marusov, E.A., and Sidorov, S.S., Feeding Behavior of the Ruffe Gymnocephalus cernuus Triggered by Olfactory and Gustatory Stimulants, J. Ichhyology, 2003, vol. 43, suppl. 2, pp. 247–254.Google Scholar
  188. Kasumyan, A.O. and Marusov, E.A., Complementary Role of Chemosensory Systems in Provision of Searching Behavioral Reaction to Trophic Chemical Signals in Barbatula barbatula, Doklady RAN, 2005a, vol. 402, no. 2, pp. 279–281.Google Scholar
  189. Kasumyan, A.O. and Marusov, E.A., Behavioral Responses to Alimentary Signals in the Carp Cyprinus carpio in the Norm and after Chronic Anosmia, J. Ichthyology, 2005b, vol. 45, supl. 2, pp. S315–S323.Google Scholar
  190. Kasumyan, A.O. and Marusov, E.A., Chemoreception in Chronically Anosmiated Fish: a Phenomenon of Compensatory Development of the Gustatory System, Vopr. Ikhtiol., 2007, vol. 47, no. 5, pp. 684–693.Google Scholar
  191. Kasumyan, A.O. and Marusov, E.A., Distant Chemoreception in Rainbow Trout Oncorhynchus mykiss under Normal Conditions and after Chronic Anosmia, Doklady RAN, 2008, vol. 423, no. 5, pp. 707–709.Google Scholar
  192. Kasumyan, A.O., Marusov, E.A., and Sidorov, S.S., Influence of the Olfactory Background on Gustatory Preferences and Gustatory Behavior of Carp Cyprinus carpio and cod Gadus morhua, Vopr. Ikhtiol., 2009, vol. 49, no, 4, pp, 528–540.Google Scholar
  193. Kasumyan, A.O. and Sidorov, S.S., Gustatory Prefences and Testing Behavior of Feed Palatability in the Bearded Stone Loach Barbatula barbatula (Balitoridae, Cypriniformes), Vopr. Ikhtiol., 2010a, vol. 50, no. 5, pp. 708–720.Google Scholar
  194. Kasumyan, A.O., Sidorov, S.S., and Marusov, E.A., Gustatory Preferences and Feeding Behavior in the Bearded Stone Loach Barbatula barbatula (Balitoridae, Cypriniformes) after Partial Deprivation of Circum-Oral External Gustatory and Tactile Receptors, J. Ichthyology, 2010b, vol. 50, no. 11, pp. 1029–1039.Google Scholar
  195. Katz, D.B., Nicolelis, M.A.L., and Simon, S.A., Nutrient Tasting and Signaling Mechanisms in the Gut. IV. There is More to Taste than Meets the Tongue, Amer. J. Physiol. Gastrointest. Liver. Physiol., 2000, vol. 278, pp. G6–G9.Google Scholar
  196. Keenleyside, M.H.A., Diversity and Adaptation in Fish Behavior, Berlin-New York: Springer, 1979.Google Scholar
  197. Kempinger, J.J., Spawning and Early Life History of Lake Sturgeon in the Lake Winnebago System, Wisconsin, Amer. Fish. Soc. Symp., 1988, vol. 5, pp. 110–122.Google Scholar
  198. Keyes, R.S., Tahiraj, E., Seemungal, N., et al., Group Cohesion in Juvenile Weakly Electric Fish Mormyrus rume proboscirotris, J. Fish Biol., 2009, vol. 75, pp. 490–502.CrossRefGoogle Scholar
  199. Khait, V., Tahiraj, G., Seemungal, N., et al., Group Cohesion in Juvenil Weakly Electric Fish Mormyrus rume profoscirostris, J. Fish Biol., 2009, vol. 75, pp. 490–502.PubMedCrossRefGoogle Scholar
  200. Khidir, K.T. and Renaud, C.B., Oral Fimbriae and Papillae in Parasitic Petromyzontes, Environm, Biol. Fish., 2003, vol. 66, pp. 271–278.CrossRefGoogle Scholar
  201. Khodorevskaya, R.P., Ruban, G.I., and Pavlov, D.S., Povedenie, migratsii, raspredelenie i zapasy osertrovykh ryb Volgo-Kaspiiskogo basseina (Behavior, Migrations, Distribution, and Stock of Acipensdrids of the Volga-Caspian Basin), Moscow: KMK, 2007 [in Russian].Google Scholar
  202. Khoroshko, P.N. and Vlasenko, A.D., Artifical Spawning Grounds of Acipensedrids, Vopr. Ikhtiol., 1970, vol. 10. No. 3, pp. 412–419.Google Scholar
  203. Kimmel, C.B., Hatta, K., and Eisen, J.S., Genetic Control of Primary Neuronal Development in Zebrafsh, Development, 1991, suppl. 2, pp. 47–57.Google Scholar
  204. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., et al., Stages of Embryonic Development of the Zerbrafish, Devel., Dyn., 1995, vol. 203, pp. 253–310.CrossRefGoogle Scholar
  205. Kirschbaum, F., Reproduction and Development of the Weakly Electric Fish, Pollimyrus isidori (Mormyridae, Teleostei) in Captivity, Environm. Biol. Fishes, 1987, vol. 20, pp. 11–31.CrossRefGoogle Scholar
  206. Kiselev, O.N. and Soloviev, B.S., Results of Observation on Fish Behavior from a Deep-Water Device, Vopr. Ikhtiol., 1961, vol. 1, no. 4, pp. 745–751.Google Scholar
  207. Kiyohara, S., Hidaka, I., and Tamura, T., The Anterior Cranial Gustatory Pathway in Fish, Experientia, 1975, vol. 31, pp. 1051–1053.PubMedCrossRefGoogle Scholar
  208. Kiyohara, S., Hidaka, I., Kitoh, J., and Yamashita, S., Mechanical Sensitivity of the Facial Nerve Fibers Innervating the Anterior Palate of the Puffer, Fugu pardalis, and Their Central Projections in the Primary Taste Center, J. Comp. Phusiol., 1985a, vol. 157, pp. 705–716.CrossRefGoogle Scholar
  209. Kiyohara, S., Houman, H., Yamashita, S, et al., Morphological Evidence for a Direct Projection of Trigeminal Nerve to the Primary Gustatory Center in the Sea Catfish Plotosus anguillaris, Brain Res., 1986, vol. 379, pp. 353–357.PubMedCrossRefGoogle Scholar
  210. Kiyohara, S. and Kitoh, J., Somatotopic Representation of the Medullary Facial Lobe of catfish Silurus asotus as Revealed by Transganlionic Transport of HRP, Fisheries Sci., 1994, vol. 60, pp. 393–398.Google Scholar
  211. Kiyohara, S., Kitoh, J., Shito, A., and Yamashita, S., Anatomical Studies of the Medullary Facial Lobe in the Sea Catfish Plotosus lineatus, Fih. Sci., 1996, vol. 62, pp. 511–519.Google Scholar
  212. Kiyohara, S., Yamashita, S., Lamb, C.F., and Finger, T.E., Distribution of Trigeminal Fibers in the Primary Facial Gustatory Center of Channel Catfish, Ictalurus punctatus, Brain, Res., 1999, vol. 841, pp. 93–100.CrossRefGoogle Scholar
  213. Kiyohara, S. Sakata, Y., Yoshitomi, T., and Tsukahara, J., The ‘Goatee’ of Goatfish: Innervation of Taste Buds in the Barbels and Their Representation in the Brain, Proc. Roy. Soc. London, 2002, vol. 269, pp. 1773–1780.CrossRefGoogle Scholar
  214. Kiyohara, S., Shiranatni, T., and Yamashita, S., Peripheral and Central Distribution of Major Branches of the Facial Taste Nerve in the Carp, Brain Res., 1985b, vol. 325, pp. 57–69.PubMedCrossRefGoogle Scholar
  215. Kiyohara, S. and Tsukahara, J., Barbel Taste System in Catfish and Goatfish, in Fish Chemosenses, Reutter, K., and Kapoor, B.G., Eds., Ensfield: Sci. Publ., 2005c.Google Scholar
  216. Klimley, A.P., Observtions of Courtship and Copulation in the Nurse Shark, Ginglymostoma cirratum, Copeia, 1980, no. 4, pp. 878–882.Google Scholar
  217. Kokorin, N.V., Klyucharev, D.S., and Sukhoruchenko, M.A., A Possibiity of Use of Antarctic Toothfish D. mawsoni for Mapping of Closed Areas, Vopr. Rybolovstva, 2007, vol. 8, no. 2, pp. 326–328.Google Scholar
  218. Konishi, J. and Zotterman, Y., Taste Function in the Carp. An Electrophysiological Study on Gustatory Fibers, Acta Physiol. Scand., 1961, vol. 52, pp. 150–161.PubMedCrossRefGoogle Scholar
  219. Kotrschal, K., Whitear, M., and Finger, T.E., Spinal and Facial Innervation of the Skin in the Gadid Fish Sliata mustela, J. Comp. Neurol., 1993, vol. 331, pp. 407–417.PubMedCrossRefGoogle Scholar
  220. Kotrschal, K., Peters, R.C., and Døving, K.B., Chemosensory and Tactile Nerve Responses from the Anterior Dorsal Fin of a Rockling, Gairdropsarus vulgaris (Gadidae, Teleostei), Prim. Sensory Neuron., 1996, vol. 1. No. 4, pp. 297–309.Google Scholar
  221. Kozhin, N.I., The Order Acipenseriformes, Zhizn’ zhivornykh (Life of Animals), vol. 4, Fishes, Rass T.S., Ed., Moscow: Prosveshchenie, 1971, pp. 101–109.Google Scholar
  222. Kryzhanovskii, S.G., Smirnov, A.I., and Soin, S.G., Materials on Development of Fish of the Amur, Tr. Amurskoi ikhtiologicheskoi ekspeditsii 1945–1949 gg., 1951, vol. 2, pp. 5–22.Google Scholar
  223. Lamborghini, J.E., Disappearance of Rohon-Beard Neurons from the Spinal Cord of Larval Xenopus laevis, J. Comp. Neurol., 1987, vol. 264, pp. 47–55.PubMedCrossRefGoogle Scholar
  224. Laming, P.R. and Brooks, M., Effects of Visual, Chemical, and Tactile Stimuli on the Averaged Auditory Response of the Teleost Rutilus rutilus, Comp. Biochem. Physiol., 1985, vol. 82A, no. 3, pp. 667–673.CrossRefGoogle Scholar
  225. Lane, E.B. and Witear, M., On the Occurrence of Merkel Cells in the Epidermis of Teleost Fishes, Cell Tissue Res., 1977, vol. 182, pp. 235–246.PubMedGoogle Scholar
  226. Lawless, H.T. and Heymann, H., Sensory Evaluation of Food: Principles and Practices, New York: Kluwer Academic/Plenum, 1998.Google Scholar
  227. Lawless, H.T., Horne, J., and Giasi, P., Astringency of Acids is Related to pH, Chem. Senses, 1996, vol. 21, pp. 397–403.PubMedCrossRefGoogle Scholar
  228. Lebedev, V.D. and Spanovskaya, V.D., The Family Cyprinidae, Zhizn’ zhivornykh (Life of Animals), vol. 4, Fishes, Rass T.S., Ed., Moscow: Prosveshchenie, 1971, pp. 268–327.Google Scholar
  229. Lemm, C.A. and Hendrix, M.A., Growth and Survival of Atlantic Salmon Fed Various Starter Diets, Prog. Fish-Cult., 1981, vol. 43, pp. 195–199.CrossRefGoogle Scholar
  230. Lethbridge, R.C. and Potter. I.C., The Oral Fimbriae of the Lamprey Geotria australis, J. Zool., London, 1979, vol. 188, pp. 267–277.CrossRefGoogle Scholar
  231. Lethbridge, R.C. and Potter. I.C., The Skin, in The Biology of Lampreys, vol. 3, Hardisty, M.W. and Potter, I.C., Eds., Toronto: Academic Press, 1981, pp. 377–448.Google Scholar
  232. Levin, A.V., Special Traits of Foraging Behavior of Juveniles of Russian Sturgeon Acipenser gueldenstaedti and Food Availability, Vopr. Ikhtiol., 1988, vol. 28, no. 1, pp. 110–116.Google Scholar
  233. Lim, J. and Green, B.G., Tactile Interaction with Taste Localization: Influence of Gustatory Quality and Intensity, Chem. Senses, 2008, vol. 33, pp. 137–143.PubMedCrossRefGoogle Scholar
  234. Lishev, M.N., Feeding and Trophic Relationships of Predatory Fish of the Amur Basin, Tr. Amurskoi ikhtiologicheskoi ekspeditsii 1945–1949 gg., 1950, vol. 1, pp. 19–146.Google Scholar
  235. Lissman, H.W., The Neurological Basis of the Locomotory Rhythm in the Spinal Dogfish (Scyllium canicula, Acanthias vulgaris). I. Reflex Behavior, J. Exp. Biol., 1946, vol. 23, pp. 143–161.Google Scholar
  236. Lissman, H.W. and Machin, K.E., The Mechanism of Object Location in Gymnarchus niloticus and Similar Fish, J. Exp. Biol., 1958, vol. 35, pp. 451–486.Google Scholar
  237. Lombarte, A. and Aquirre, H., Quantitative Differences in the Chemoreceptor Systems in the Barbels of Two Species of Mullidae (Mullus surmuletus and M. barbatus) with Different Bottom Habitats, Mar. Biol. Prog. Ser., 1997, vol. 150, pp. 57–64.CrossRefGoogle Scholar
  238. Losey, G.S., Cleaning Symbiosis, Symbiosis, 1987, vol. 4. Pp. 229–258.Google Scholar
  239. Loosey, G.S., Knowledge of Proximate Causes Aids Our Understanding of Function and Evolutionary History, Mar. Behav. Physiol., 1993, vol. 23, pp. 175–186.CrossRefGoogle Scholar
  240. Lowenstein, O., Pressure Receptors in the Fins of the Dogfish, Scyliorhinus canicula, J. Exp. Biol., 1956, vol. 33, pp. 417–421.Google Scholar
  241. Luiten, P.G.M., The Central Projections of the Trigeminal, Facial, and Anterior Lateral Line Nerves in the Carp (Cyprinus carpio L.), J. Comp. Neurol., 1975, vol. 160, pp. 399–417.PubMedCrossRefGoogle Scholar
  242. Lumpkin, E.A. and Caterina, M.J., Mechanisms of Sensory Transduction in the Skin, Nature, 2007, vol. 445, pp. 858–865.PubMedCrossRefGoogle Scholar
  243. Lyon, E.P., On Rheotropism. I. Rheotropism in Fishes, Amer. J. Physiol., 1904, vol. 12. No. 2, pp. 149–161.Google Scholar
  244. Mackie, A.M., Adron, J.W., and Grant, P.T., Chemical Nature of the Feeding Stimulants for the Juvenile Dover Sole, Solea solaea (L.). J. Fish Biol., 1980, vol. 16, pp. 701–708.CrossRefGoogle Scholar
  245. Malyukina, G.A., Kasumyan, A.O., Marusov, E.A., and Pashchenko, N.I., Alarm Pheromon and Its Significance in Fish Behavior, Zh. Obshchei boil., 1977, vol. 38, no. 1, pp. 123–131.Google Scholar
  246. Marchesan, M., Ota, D., and Ferrero, E.A., The Role of Mechanical Stimulation during Breeding in the Grass Goby Zosterisessor ophiocephalus (Teleostei, Gobiidae), Ital. J. Zool., 2000, vol. 67, pp. 25–30.CrossRefGoogle Scholar
  247. Markevich, G.N., Results of Introduction of Resident Form of Oncorhynchus nerka in Tolmachevskoe Ozero (Kamchatka), Vopr. Ikhtiol. 2009, vol. 49, no. 1, pp. 85–92.Google Scholar
  248. Martin, A.R. and Wickelgren, W.O., Sensory cells in the Spinal Cord of the Sea Lamprey, J. Physiol., 1971, vol. 212, pp. 65–83.PubMedGoogle Scholar
  249. Marui, T., The Responses in the Facial Lobe of the Carp, Cyprinus carpio L., Brain Res., 1977, vol. 130, pp. 287–298.PubMedCrossRefGoogle Scholar
  250. Marui, T. and Funakoshi, M., Tactile Input to the Facial Lobe of te Carp, Cyprinus carpio L., Brain Res., 1979, vol. 177, pp. 479–488.PubMedCrossRefGoogle Scholar
  251. Marui, T. and Caprio, J., Electrophysiological Evidence for the Topographical Arrangement of Taste and Tactile Neurons in the Facial Lobe of the Channel Catfish, Brain Res., 1982, vol. 231, pp. 185–190.PubMedCrossRefGoogle Scholar
  252. Marui, T., Caprio, J., Kiyohara, S., and Kasahara, Y., Topographical Organization of Taste and Tactile Neurons in the Facial Lobe of the Sea Catfish, Plotosus lineatus, Brain Res., 1988, vol. 446, pp. 178–182.PubMedCrossRefGoogle Scholar
  253. Marui, T. and Caprio, J., Teleost Gustation, in Fish Chemoreception, Hara, T.J., Ed., London: Chapman and Hall, 1992, pp. 171–198.CrossRefGoogle Scholar
  254. Maruska, K.P. and Tricas, T.C., Morphology of the Mechanosensory Lateral Line System in the Artlantic Stingray, Dasystis sabina: the Mechanotactile Hypothesis, J. Morphol., 1998, vol. 238, pp. 1–22.CrossRefGoogle Scholar
  255. Marusov, E.A., Special Traits in the Reaction of the White Sea Cod Gadus morhua matisalbi and Juveniles of the White Sea Kumzha Salmo trutta to Feed and Alimentary Chemical Stimuli, Vopr. Ikhtiol., 1997, vol. 37, no. 1, pp. 138–142 [J. Ichthyol. (Engl. Transl.), 1997, vol. 37, no. 1, pp. 127–131].Google Scholar
  256. Matsushima, T., Takei, K., Kitamura, S., et al., Rhythmic Electromyographic Activities of Trunk Muscles Characterize the Sexual Behabior in the Himé Salmon (Landlocked Sockey Salmon, Oncorhynchus nerka), J. Comp. Physiol., 1989, vol. 165, pp. 293–314.CrossRefGoogle Scholar
  257. McClintock, J.B. and Janssen, J., Pteropod Abduction as a Chemical Defense in a Pelagic Antarctic Amphipod, Nature, 1990, vol. 346, pp. 462–464.CrossRefGoogle Scholar
  258. McCormick, M.I., Development and Changes at Settlement in the Barbel Structure of the Reef Fish, Upeneus tragula (Mullidae), Environm. Biol. Fishes, 1993, vol. 37, pp. 269–782.CrossRefGoogle Scholar
  259. Mercy, A.T.V., Pillai, N.K., and Balasurbramanian, N.K., Studies of Certain Aspects of Behaviour in the Blind Catfish Horagalanis krishnai Menon, Int. J. Speleol., 2001, vol. 30A, nos. 1–4, pp. 57–69.Google Scholar
  260. Metcalfe, W.K., Myers, P.Z., Trevarrow, B., et al., Primary Neurons that Express L2/HNK-1 Carbohydrate during Early Development in the Zebrafish, Dvelopment, 1900, vol. 110, pp. 491–504.Google Scholar
  261. Meyer, W.H., Life History of Three Species of Redhorse (Moxostoma) in the Des Moines River, Iowa, Trans. Amer. Fish. Soc., 1962, vol. 91, no. 4, pp. 412–419.CrossRefGoogle Scholar
  262. Mittal, A,K. and Whitear, M., A Note on Cold Anaesthesia of Poikiloterms, J. Fish Biol., 1978, vol. 13, no. 4, pp. 519–520.CrossRefGoogle Scholar
  263. Moles, A. and Norcross, B.L., Sediment Preference in Juvenile Pacific Flatfishes, Neth. J. Sea Res., 1995, vol. 34, pp. 177–182.CrossRefGoogle Scholar
  264. Moller, P., Electric fishes: History and Behavior, London: Chapman and hall, 1995.Google Scholar
  265. Moller, P., Serrier, J., Belbenoit, P., and Push, S., Notes on Ethology and ecology of the Swasi River Mormyrids (Lake Kainji, Nigeria), Behav. Ecol. Sociobiol., 1979, vol. 4, pp. 357–368.CrossRefGoogle Scholar
  266. Monthomery, J. and Pankhurst, N., Sensory Physiology, in Deep-Sea Fishes, Randall, D.J. and Farrell, A.P., Eds., San Diego: Academic Press, 1997, pp. 325–349.CrossRefGoogle Scholar
  267. Morgan, M.J., Interactions between Substrate and Temperature Preference in Adult American Plaice (Hyppoglossoides platessoides), Mar. Freshwater Behav., Physiol., 2000, vol. 33, no. 4, pp. 249–259.CrossRefGoogle Scholar
  268. Morrill, A.D., The Pectoral Appendages of Prionotus and Their Inervations, J. Morphol., 1895, vol. 11, pp. 177–197.CrossRefGoogle Scholar
  269. Moss, S.A., Shark Feeding Mechanisms, Oceans, 1981, vol. 24, no. 4, pp. 23–29.Google Scholar
  270. Moyle. P.B. and Cech, J.J., Jr., Fishes: an Introduction to Ichthyology, Upper Saddle River: Prentice Hall, 2000.Google Scholar
  271. Murray, R.W., The Initiation of Cutaneous Nerve Impulses in Elasmobranch Fisjes. J. Physiol., 1961, vol. 159, pp. 546–570.PubMedGoogle Scholar
  272. Nasir, N.A. and Paxton, M.G., Substratum Preferences of Juvenile Flatfish, Cybium, 2001, vol. 25, no. 2, pp. 109–117.Google Scholar
  273. Nelson, J.S., Fishes of the World, New York: John Wiley and Sons, 2006 (Russian translation: Ryby mirovoi fauny, Moscow: Librokom, 2009).Google Scholar
  274. Nichol, J.A.C., The Luminescence in Fishes, Symp. Zool. Soc. Lonson, 1967, vol. 19, pp. 27–55.Google Scholar
  275. Nikolskiy, G.V., Ekologiya ryb (Ecology of Fishes), Moscow: Vysshaya shkola, 1974.Google Scholar
  276. Nikolskiy, G.V. Gromchevskaya, N.A., Morozova, G.I., and Pikuleva, V.A., Ryby basseina Verkhnei Pechory (Fishes of the Upper Pechora Basin), Moscow: Moscow Soc. Natur., 1947.Google Scholar
  277. Nikolskiy, G.V. and Pikuleva, V.A.,On Adaptive Significance of Species Characters and Properties of Organisms, Zool. Zh., 1958, vol. 37. No. 7, pp. 972–988.Google Scholar
  278. Nunzi, M.G., Pisarek, A., and Mugnaini, E., Merkel Cells, Corpuscular Nerve Endings: Three Subtypes of Vesicular Glutamate Transporters, J. Neurocytol., 2004, vol. 33, pp. 359–376.PubMedCrossRefGoogle Scholar
  279. Ogawa, K., Marui, T., and Caprio, J., Quinine Suppression of Single Facial Fiber Responses in the Channel Catfish, Brain Res., 1997, vol. 769, pp. 263–272.PubMedCrossRefGoogle Scholar
  280. Olmsted, J.M.D., Experiments on the Nature of the Sense of Smell in the Common Catfish, Amiurus nebulosus (Lesueur), Amer. J. Physiol., 1918, vol. 46, pp. 443–458.Google Scholar
  281. Olshanskii, V.M., Soldatova, O.A., Morshnev, K.S., and Nguen Thi Naga, Electrogenerating Activity of Catfishes Clarias macrocephalus (Claridae, Siluriformes) during Breeding Behavior, Doklady RAN, 2009, vol. 429, no. 5, pp. 705–709.Google Scholar
  282. Ono, R.D., Sensory Nerve Endings of Highly Mobile Structures in Two Marine Teleost Fishes, Zoomorphologie, 1979, vol. 92, pp. 107–14.CrossRefGoogle Scholar
  283. Osyazanie (Sense of Touch), Bolshaya Sovetskaya Entsiklopediya (Great Soviet Encyclopedia), vol. 18, Moscow: Sovetskaya Entsyklopedia, 1974, vol. 18, p. 599.Google Scholar
  284. Otterå, H., Hemre, G.L., and Lie, Ø., Influence of Dietary Water Content on Feed Intake, Growth, and Survival of Juvenile Atlantic Cod (Gadus morhua L.) during the Weaning Process, Aquacult. Fish. Manag., 1994, vol. 25, pp. 915–926.Google Scholar
  285. Otterå, H., Gratun-Tjeldstø, O., Julshamn, K., and Austrang, E., Feed Prefernce in Juvenile Cod Estimated by Inert Lanthanid Markers—Effects of Moisiture Content in the Feed, Aquaculture Int., 2003, vol. 11, pp. 217–224.CrossRefGoogle Scholar
  286. Outob, Z., Swim-Bladders of Fish as Pressure Receptors, Arch. Neerl. Zool., 1962, vol. 15, pp. 1–67.Google Scholar
  287. Parin, N.V., Flying Fishes (Exocoetidae) of the North-Western Part of the Pacific Ocean, Tr. Instituta okeanologii RAN, 1960, vol. 31, pp.205–285.Google Scholar
  288. Parin, N.V., On the Fauna of Flying Fishes (the Family Exocoetidae) of the Pacific and Indian Oceans, Tr. Instituta okeanologii RAN, 1961a, vol. 43, pp. 40–91.Google Scholar
  289. Parin, N.V., Foundations of the System of Flying Fishes (Oxyporhamphidae and Exocoetidae, Tr. Instituta okeanologii RAN, 1961b, vol. 43, pp. 92–183.Google Scholar
  290. Parin, N.V., The Order Pristiformes, Zhizn’ zhivornykh (Life of Animals), vol. 4, Fishes, Rass T.S., Ed., Moscow: Prosveshchenie, 1971, p. 54.Google Scholar
  291. Parin, N.V., Ryby otkrytogo okeana (The Fishes of the Open Ocean), Moscow: Nauka, 1988.Google Scholar
  292. Parker, G.H., Influence of the Eyes, Ears, and Other Allied Sense Organs on the Movements of the Dogfish, Mustelus canis (Mitchill), Bull. Bureau Fish., 1910, vol. 29. no. 738, pp. 45–57.Google Scholar
  293. Parker, G.H., The Relations of Smell, Taste, and the Common Chemical Sense in Vertebrates, J. Acad. Nat. Sci. Philadelphia, 1912, vol. 18, pp. 221–234.Google Scholar
  294. Pavlov, D.S., Experiments on Feeding of burbot Lota lota (L.) at Different Illumination, Nauchnye Doklady Vysshei Shkoly, Biol., 1959, no. 4, pp. 42–46.Google Scholar
  295. Pavlov, D.S., Some Data on Olfaction of Rockling (Gaidropsarus mediterraneus) and Its Significance in Food Searching, Vopr. Ikhtiol., 1962, vol. vol. 2, no. 2, pp. 361–366.Google Scholar
  296. Pavlov, D.S., Optomotornaya reaktsiya i osobennosti orientatsii ryb v potoke vody (Optomotor Reaction and Special Traits of Fish Orientaion in Water Flow), Moscow: Nauka, 1970a [in Russian].Google Scholar
  297. Pavlov, D.S., Special Traits of Fish Orientation in Water Flow, in Biologicheskie osnovy upravleniya povedeniem ryb (Biological Foundations of Management of Fish Behavior), Moscow: Nauka, 1970b, pp. 226–266.Google Scholar
  298. Pavlov, D.S. and Kasumyan, A.O., Sensory Foundations of Foraging Behavior of Fish, Vopr. Ikhtiol., 1990, vol. 30, no. 5, pp. 720–732.Google Scholar
  299. Pavlov, D.S., Sbikin, Yu.N., and Mochek, A.D., Influence of Illumination in Water Flow on Movement Rate of Fish in Relation to Special Traits of Their Orientation, Vopr. Ikhtiol., 1968, vol. 8, no. 2, pp. 318–324.Google Scholar
  300. Pavlov, D.S., Sbikin, Yu.N., and Popova, I.K., The Role of Sense Organs in Feeding of Acipenserid Juveniles, Zool. Zh., 1970, vol. 49, no. 6, pp. 872–880.Google Scholar
  301. Pavlov, D.S., Biologicheskie osnovy upravleniya povedeniem ryb v potoke vody (Biological Foundations of Management of Fish Behavior in Water Flow), Moscow: Nauka, 1979 [in Russian].Google Scholar
  302. Peake, S., Substrate Preferences of Juvenile Hatchery-Reared Lake Sturgeon, Acipenser fulvescens, Environm. Biol. Fish., 1999, vool. 56, pp. 367–374.CrossRefGoogle Scholar
  303. Peters, R.C., Van Steenderen, G.W., and Kotrschal, K., A Chemoreceptive Function for the Anterior Dorsal Fin in Roclings (Gaidropsarus: and Ciliata: Teleostei Gadidae): Electrophysiological Evidence, J. Mar. Biol. Assoc. UK, 1987, vol. 67, pp. 819–823.CrossRefGoogle Scholar
  304. Peters, R.C., Kotrschal, K., and Kraugartner, W.D. Solitary Chemosensory Cells of Ciliata mustela (Gadidae, Teleostei) Are Tuned to Mucoid Stimuli, Chem. Senses, 1991, vol. 16, pp. 31–42.CrossRefGoogle Scholar
  305. Piatt, C.J., Bullock, T.H., Czeh, G., et al., Comparison of Electoreceptor. Mechanoreceptor, and Optic Evoked Potentials in the Brain of Some Rays and Sharks, J. Comp. Physiol., A, 1974, vol. 95, pp. 323–355.CrossRefGoogle Scholar
  306. Platt, C., Equilibrium in the Vertebrates: Signals, Senses, and Steering Underwater, in Sensory Biology of Aquiatic Animals, Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N., Eds., New York: Springer, 1988, pp. 783–809.CrossRefGoogle Scholar
  307. Poloumordwinoff, D., Recherches sur les termibaisons nerveuses sensitives dans les muscles volontaires, Soc. Sci. Station Zool. D’Arcachon, 1898, vol. 3, pp. 73–79.Google Scholar
  308. Prazdnikova, N.V., Methods of Investigation of Conditioned Reflexes in Fish, in Rukovodstvo po metodike issledovanya fiziologii ryb (Handbook of Investigations of Fish Physiology), Malyukina, G.A., Ed., Moscow: AN SSSR, 1962, pp. 242–161.Google Scholar
  309. Puchkov, N.V., Fiziologiya ryb (Fish Physiology), Moscw: Pishchepromizdat, 1954 [in Russian].Google Scholar
  310. Puzdrowski, R.L., Afferent Projections of the Trigeminal Nerve in the Goldfish, Carassius auratus, J. Morphol., 1988, vol. 198, pp. 131–147.PubMedCrossRefGoogle Scholar
  311. Radakov, D.V. and Soloviev, B.S., Fisrt Experience of Use of a Submarine for Observations on Herring Behavior, Rybnoe khozyaistvo, 1959, no. 7, pp. 16–21.Google Scholar
  312. Raffin-Peygholz, R., Etude histologique des barbillons de quelques poissons d’eau douce, Travaux de Lab. D’Hydrobiol. Piscicult. l’Univers. Grenoble, 1955, vol. 42, pp. 73–97.Google Scholar
  313. Randall, J.E. and Hartman, W.D., Sponge Feeding Fishes of the West-Indies, Mar. Biol., 1968, vol. 1. pp. 216–225.CrossRefGoogle Scholar
  314. Randall, J.E. and Helfman, G.S., Attacks on Humans by the Blacktip Reef Shark (Carcharhinus melanopterus), Pacif. Sci., 1973, vol. 27, no. 3, pp. 226–238.Google Scholar
  315. Reilly, S.C., Quinn, J.P., Cossins, A.R., and Sneddon, L.U., Behavioural Analysis of a Nocioceptive Event in Fish: Comparisons between Three Species Demonstrate Specific Response, Appl. An. Bahev. Sci., 2008, vol. 114, pp. 248–259.CrossRefGoogle Scholar
  316. Reutter, K., Die Geschmacksknopfen des Zwergwelses Amiurus nebulosus (Lesueur). Morphologische und hiatochemische Untersuchungen, Z. Zellforsch., 1971, vol. 120, pp. 280–308.PubMedCrossRefGoogle Scholar
  317. Reutter, K., Chemoreceptors, Biology of the Integuments, vol. II, Bereiter-Hahn, J., Matoltsy, A.G., and Richards, K.S., Eds., Berlin: Springer, 1986, pp. 586–604.Google Scholar
  318. Reutter, K.,, Specilaized Rreceptor Villi and Basal Cells within the Taste Bud of the European Silurid Fish, Silurus glanis (Teleostei), Ann. New York Acad. Sci., 1987, vol. 510, pp. 570–573CrossRefGoogle Scholar
  319. Reutter, K., Structure of the Peripheral Gustatory Organ, Represented by the Silurid Fish Plotosus lineatus (Thunberg), in Fish Chemoreception, Hara, T.J., Ed., London: Chapman and Hall, 1992, pp. 60–78.CrossRefGoogle Scholar
  320. Reutter, K. and Witt, M., Morphology of Vertebrate Taste Organs and Their Nerve Supply, in Mechanisms of Taste Transduction, Simon, S.A. and Roper, S.D., Eds., Boca raton: CRC Press, 1993, pp. 29–82.Google Scholar
  321. Ribera, A.B. and Nüsslein-Velhard A.B., Zebrafish Touch-Insensitive Mutants Reveal an Essential Role for the Developmental Regulation of Sodium Current, J. Neurosci., 1998, vol. 18, no. 22, pp. 9181–9191.PubMedGoogle Scholar
  322. Richmond, A.M. and Kynard, B., Ontogenetic Behavior of Shortnose Sturgeon, Acipenser brevirotrum, Copeia, 1995, no. 1, pp. 171–182.Google Scholar
  323. Ridge, R.M.A.P., Physiological Responses of Stretch Receptors in the Pectoral Fin of the Ray Raja clavata, J. Mat. Biol. Ass. UK, 1977, vol. 57, no. 2, pp. 535–541.CrossRefGoogle Scholar
  324. Roberts, B.L., The Spinal Nerves of the Dogfish (Scylorhinus), J. Mar. Biol. Assoc. UK, 1969a, vol. 49, pp. 51–75.CrossRefGoogle Scholar
  325. Roberts, B.L., The Response of a Proprioreceptor to the Undularory Movements of Dogfish, J. Exp. Biol., 1969b, vol. 51, pp. 775–785.Google Scholar
  326. Roberts, B.L., Mechanoreceptors and the Behaviour of Elamobranch Fishes with Special Reference to the Acoustic-Lateralis System. In Sensory Biology of Sharks, Skates, and Rays, Hidgson, E.S. and Mathewson, R.F., Eds., Arligton, VA: Office of Naval Research, 1978, pp. 331–390.Google Scholar
  327. Roberts, A., The Function and Role of Two Types of Mechnoreceptive “Free” Nerve Endings in the Head Skin of Amphibian Embryos, J. Comp. Physiol., 1980, vol. 135, pp. 341–348.CrossRefGoogle Scholar
  328. Roberts, B.L. and Witkowsky, P., A Functional Analysis of the Mesencerhalic Nucleus of the Fifth Nerve in the Selachian Brain, Proc. Roy. Soc. Lond. B, 1975, vol. 190, pp. 473–495.CrossRefGoogle Scholar
  329. Roberts, A. and Hayes, B.P., The Anatomy and Function of “Free” Nerve Endings in an Amphibian Skin Sensory System, Proc. Roy. Soc. London, B, 1977, vol. 196, pp. 415–429.CrossRefGoogle Scholar
  330. Rohon, V., Zur Histogenese des Ruckenmarkes Der Forelle, Akad. Wiss. Math. Phys. Kl., Jahrg. 1884, 1885, vol. 14, pp. 39–57.Google Scholar
  331. Rose, J.D., The Neurobehavioral Nature of Fishes and the Question of Awareness and Pain, Rew. Fish. Sci., 2002, vol. 10. No. 1, pp. 1–38.CrossRefGoogle Scholar
  332. Saint-Amant, L. and Drapeau, P., Time Course of the Development of Motor Behaviors in the Zebrafish Embryo, J. Neurobiol., 1998, vol. 37, pp. 622–632.PubMedCrossRefGoogle Scholar
  333. Sakata, Y., Tsukahara, J., and Kiyohara, S., Distribution of Nerve Fibers in the Barbels of Sea Catfish Plotosus lineatus, Fish. Sci, 2001, vol. 67, pp. 1136–1144.CrossRefGoogle Scholar
  334. Sasko, D.E., Dean, M.N., Motta, P.J., and Huclez, R.E., Prey Capture Behaviour and Kinematics of the Atlantic Ray, Rhinoptera bonasus, Zoology, 2006, vol. 109, pp. 71–181.Google Scholar
  335. Satchell, G.H. and Way. H.K., Pharyngeal Proprioreceptors in the Dogfish Squalus acanthias, J. Exp. Biol., 1962, vol. 39, pp. 243–250.PubMedGoogle Scholar
  336. Sato, M., Histology opf the Barbels of Blepsias cirrhosis draciscus (Cottidae), Jpn. J. Ichthyology, 1977, vol. 23, pp. 220–224.Google Scholar
  337. Sbikin, Yu.N. and Khomenkov, A.S., Influence of Ground Type and of Current on Behavior of Acipenserid Juveniles under Experimental Conditions, Zool. Zh., 1980, vol. 59, no. 11, pp. 1661–1670.Google Scholar
  338. Sbikin, Yu.N. and Bibikov, N.I., Attitude of Juveniles of Acipenserids to Particular Elements of Bottom Landscapes, Vopr. Ikhtiol., 1988, vol. 28, no. 3, pp. 473–477.Google Scholar
  339. Schaefer, S.A. and Buitrago-Suárez, U.A., Odontode Morphology and Skin Features of Andean Astroblepid Catfishes (Siluriformes, Astroblepidae), J. Morphol., 2002, vol. 254, pp. 139–148.PubMedCrossRefGoogle Scholar
  340. Scharrer, E., Intraepithelial Nerve Terminals in the Free Finrays of the Searobin, Prionotus carolinus L., Anat. Rec., 1963, vol. 145, no. 2, pp. 367–368.Google Scholar
  341. Scharrer, E., Smith, S.W., and Palay, S.L., Chemical Sense and Taste in the Fishes Prionotus and Trichogaster, J. Comp. Neurol., 1947, vol. 86, pp. 183–198.PubMedCrossRefGoogle Scholar
  342. Schiche, O.E., Reflexologische Studien an Bodenfischen, I. Beobachtungen an Amiurus nebulosus Les. Zool. Jahrb., Abt. Allg. Zool., 1920, vol. 38, pp. 49–112.Google Scholar
  343. Schmidt, R.E., Variation in Barbels of Rhinichthys cataractae (Pisces, Cyprinidae) in Southeastern New York with Comments on Phylogeny and Functional Morphology, J. Freshwater Ecol., 1983, vol. 2, pp. 239–246.CrossRefGoogle Scholar
  344. Scott, J.S., Selection of Bottom Type by Groundfishes of the Scotian Shelf, Can. J. Fish. Aquat. Sci., 1982, vol. 39, pp. 943–947.CrossRefGoogle Scholar
  345. Scott, S.A., Cooper, E., and Diamond, J. Merkel Cells as Targets of the Mechanosensory Nerves in Salamander Skin, Proc. Roy. Soc. London, 1981, b, vol. 211, pp. 73–79.Google Scholar
  346. Sensory Biology of Aquatic Animals, Atema, J., Fay, R.R., Popper, A.N., and Tavolga, W.N., Eds., New York: Springer, 1988.Google Scholar
  347. Sensory Processing in Aquatic Environments, Colin, S.P. and Marshall, N.J., Eds., New York: Springer, 2003.Google Scholar
  348. Shepherd, G.M., Smell Images and the Flavour System in the Human Brain, Nature, 2006, vol. 444, pp. 316–321.PubMedCrossRefGoogle Scholar
  349. Shmalgauzen, O.I., Disturbance of Development of th Olfactory Nerve in Acipeserids at Certain Conditions of Raising, Tr. Inst. Morfologii zhivotnykh AN SSSR, 1962, no. 40, pp. 188–218.Google Scholar
  350. Shmidt, R., Somatovisceral Sensitivity, in Osnovy sensornoi fiziologii (Principles of Sensory Physiology), Shmidt, R., Ed., Moscow: Mir, 1984, pp. 93–141.Google Scholar
  351. Sibbing, F.A., Food Capture and Oral Processing, in Cyprinid Fishes: Systematics, Biology and Exploitation, Winfield, I.J. and Nelson, J.S., Eds., London: Chapman and Hall, 1991, pp. 377–412.CrossRefGoogle Scholar
  352. Sibbing, F.A., Osse, J.W.M., and Terlouw, A., Food handling in the Carp (Cyprinus carpio): Its Movement Patterns, Mechanisms, and Limitations, J. Zool. Soc. London, 1986, vol. 210(A), no. 2, pp. 161–203.Google Scholar
  353. Silver, W.L. and Finger, T.E., Electrohysiological Examination of a Non-Gustatory Chemosense in the Searobin, Prionotus carolinus, J. Comp. Physiol., vol. A 154, no. 2, pp. 167–174.Google Scholar
  354. Simon, S.A., de Araujo, I.E., Gutierrez, R., and Nicolelis, M.A.L., The Neural Mechanisms of Gustation: a Distributed Processing Code, Nat. Rev. Neurosci., 2006, vol. 7, pp. 890–901.PubMedCrossRefGoogle Scholar
  355. Simon, S.A., de Araujo, I.E., Stapleton, J.R., and Nicolelis, M.A.L., Multosensory Processing of Gustatory Stimuli, Chem. Perception., 2008, vol. 1, pp. 95–102CrossRefGoogle Scholar
  356. Sjaarstad, Ø.V., Hove, K., and Sand, O., Physiology of Domestic Animals, Oslo: Scandinavian Veterinary Press, 2003.Google Scholar
  357. Smirnov, A.I., Biologiya razmnozheniya i razvitie tikhookeanskikh lososei (Reproduction Biology and Development of Pacific Salmons), Moscow: Moscow University, 1975 [in Russian].Google Scholar
  358. Smith, C.U.M., Biology of Sensory Systems, New York: Wiley-Blackwell, 2008.Google Scholar
  359. Smith, K., Biologiya sensornykh system (Biology of Sensory Systems), Moscow: BINOM, 2005.Google Scholar
  360. Smith, R.J.F., Alarm Signals in Fishes, Rev. Fish. Fish Biol., 1992, vol. 2, pp. 33–63.CrossRefGoogle Scholar
  361. Sneddon, L.U., Braithwaite, V.A., and Gentle, M.J., Do Fish Have Nociceptors? Evidence for the Evolution of Vertebrate Sensory System, Proc. Roy. Soc. London, B, 2003, vol. 270, pp. 1115–1121.CrossRefGoogle Scholar
  362. Soin, S.G., Prisposobitelnye osobennosti razvitiya ryb (Adaptive Traits of Fish Development), Moscow: Moscow University, 1968 [in Russian].Google Scholar
  363. Soin, S.G., Kasumyan, A.O., and Pashchenko, N.I., Ecologo-Morphological Analysis of Development of Phoxinus phoxinus (L.) (Cyprinidae), Vopr. Ikhtiol., 1981, vol. 21, no. 4, pp. 695–710.Google Scholar
  364. Sorensen, P.W., Hara, T.J., Stacey, N.E., and Goetz, F.W.M., F-Prostagladinins Function as Potent Olfactory Stimulants that Comprise the Postovulatory Female Sex Pheromone in Goldfish, Biol. Repr., 1988, vol. 39, pp. 1039–1050.CrossRefGoogle Scholar
  365. Spitzer, N.C., What do Rohon-Beard Cells Do? Trends Neurosci., 1984, vol. 7, pp. 224–225.CrossRefGoogle Scholar
  366. Springer, S., Natural History of the Sandbar Shark, Eulamia milberti, Fishery Bull. Fish. Wild. Serv. U.S., 1960, vol. 61, pp. 1–38.Google Scholar
  367. Späth, M., Die Wirklung der Temperatur auf die Mechanoreceptoren des Knochenfisches Leuciscus rutilus L., Ein Beitrag zur Thermoreception, Z. Vergl. Physiol., 1967, vol. 56, pp. 431–462.CrossRefGoogle Scholar
  368. Stoner, A.W. and Sturm, E.A., Temperature and Hunger Mediate Sablefish (Anoplopoma fimbria) Feeding Motivation: Implications and Stock Assessment, Can. J. Fish. Aquat. Sci., 2004, vol. 61, pp. 238–246.CrossRefGoogle Scholar
  369. Stradmeyer, L., Metcalfe, N.B., and Thorpe, J.E., Effect of Food Pellet Shape and Texture on the Feeding Response of Juvenile Atlantic Salmon, Aquaculture, 1988, vol. 73, pp. 217–228.CrossRefGoogle Scholar
  370. Strong, W.R., Jr., Snelson, F.F., and Gruber, S.H., Hammerhead Shark Predation on Stingray: an Observation of Prey Handling by Sphyrna mokarran, Copeia, 1990, no. 3, pp. 836–840.Google Scholar
  371. Subhedar, A., Deshmukh, M.K., Jain, M.R., et al., Activation of Hypothalamic Neurons by Intraovarian Pressure Signals in a Teleost Fish Clarias batrachus: Role of Mechanosensistive Channels, Brain. Behav. Evol., 1996, vol. 47, pp. 179–184.PubMedCrossRefGoogle Scholar
  372. Sulaeman, M., Ogura, Y., Matsuoka, T., and Kawamura G. ξ-Point against Tactile Stimulation and Its Effect to Forward Motion of Fish upon Contact with a Mesh, Nippon Suisan Gakkaishi, 1999, vol. 65, no. 6, pp. 991–997.CrossRefGoogle Scholar
  373. Suvorov, E.K., Osnovy ikhtiologii (Principles of Ichtyology), Leningrad: Sovetskaya nauka, 1948 [in Russian].Google Scholar
  374. Svoboda, K.R., Linares, A.E., and Ribera, A.B., Activity Regulates Programmed Cell Death of Zebrafish Rohon-Beard Neurons, Development, 2001, vol. 128, pp. 3511–3520.PubMedGoogle Scholar
  375. Tachibana, T., Ishizeki, K, Sakahura, Y., and Nawa, T., Ultrastructural Evidence for a Possible Secretory Function of Merkel Cells in the Barbels of a Teleost Fish, Cyprinus carpio, Cell Tissue Res., 1984, vol. 235, pp. 695–697.PubMedCrossRefGoogle Scholar
  376. Tachibana, T., Yamamoto, H., Takahashi, N., et al., Polymorphism of Merkel Cells in the Rodent Palate Mucosa: Immunohistochemical and Ultrastructural Studies, Arch. Histol. Cytol., 1997, vol. 60, pp. 379–389.PubMedCrossRefGoogle Scholar
  377. Tachibana, T., Fujiwara, N., and Nawa, T. Postnatal Differentiation of Merkel Cells in the Rat Palatine Mucosa, with Special Reference to the Timing of Peripheral Nerve Development and the Potency of Cell Mitosis, Anat. Embryol., 2000, vol. 202, pp. 359–367.PubMedCrossRefGoogle Scholar
  378. The Physiology of Fishes, Evans, D.H., Ed., Boca Raton: CRS Press, 1993.Google Scholar
  379. The Physiology of Fishes, Evans, D.H., Ed., Boca Raton: CRS Press, 1998.Google Scholar
  380. The Physiology of Fishes, Evans, D.H. and Clairborne, J.B., Eds., Boca Raton: CRS Press, 2006.Google Scholar
  381. The Senses of Fish: Adaptations for the Reception of Natural Stimuli, von der Emde, G., Mogdans, J., Kapoor, B.G., Eds., Boston: Kluwer Academic Publ., 2004.Google Scholar
  382. Tinbergen, N. Povedenie zhivotnykh (Behavior of Animals), Moscow: Mir, 1969.Google Scholar
  383. Todrank, J. and Bartoshuk, L.M., A Taste Illusion: Taste Sensation Localized by Touch, Physiol. Behav., 1991, vol. 50, pp. 1027–1031.PubMedCrossRefGoogle Scholar
  384. Toyoshima, K., Nada, O., and Shimamura, A., Fine Structure of Monoamine-Containing Basal Cells in the Barbels of Three Species of Teleosts, Cell. Tissue Res., 1984, vol. 235, pp. 484–497.CrossRefGoogle Scholar
  385. Toyoshima, K., Seta, Y., Toyono, T., and Takeda, S., Merkel Cells are Responsible for the Initiation of Taste Organ Morphogenesis in the Frog, J. Comp. Physiol., 1999, vol. 406, pp. 129–140.Google Scholar
  386. Twongo, T.K. and MacCrimmon, H.R., Histogenesis of the Oropharyngeal and Oesophageal Mucosa as Related to Early Feeding in Rainbow Trout, Salmo gairdneri Richradson, Can. J. Zool., 1977, vol. 55, pp. 116–128.CrossRefGoogle Scholar
  387. Ueki, S. and Domino, E. Some Evidence for a Mechanical Receptor in Olfactory Function, J. Neurophysiol., 1961, vol. 24, no. 1, pp. 12–25.PubMedGoogle Scholar
  388. Uematsu, K. and Yamamori, K., Body Vibration as a Timing Cue for Spawning in Chum Salmon, Comp. Biochem. Physiol., 1982, vol. 72A, pp. 591–594.CrossRefGoogle Scholar
  389. Van Alstyne, K.L. and Paul, V.J., Chemical and Structural Defenses in the Sea Fan Gorgonia ventalina: Effects against Generalist and Specialist Predators, Coral Rufs, 1992a, vol. 11, pp. 155–159.CrossRefGoogle Scholar
  390. Van Alstyne, K.L., Wylie, C.R., Paul, V.J., and Meyer, K., Antipredator Defenses in Tropical Pacific Soft Corals (Coelenterata: Alcyonacea). I. Sclerites as Defences against Generalist Carnivorous Fishes. Biol. Bull., 1992b, vol. 182, pp. 231–240.CrossRefGoogle Scholar
  391. Van Alstyne, K.L., Wylie, C.R., and Paul, V.J., Antipredator Defenses in Tropical Pacific Soft Corals (Coelenterata: Alcyonacea). II. The Relative Importance of Chemical and Structural Defenses in Three Species of Sinularia, J. Exp. Mar. Biol. Ecol., 1994, vol. 178, pp. 17–34.CrossRefGoogle Scholar
  392. Van Boven, R.W. and Johnson, K.O., The Limit of Tactile Spatial Resolution in Humans: Grating Orientation Discrimination at the Lip, Tongue, and Finger, Neurology, 1994, vol. 44, pp. 2361–2366.PubMedGoogle Scholar
  393. Vartanyan, I.A., Fiziologiya sensornykh system: rukovodstvo (Physiology of Sensory Systems: Handbook), St.-Petersburg: Lan’, 1999 [in Russian].Google Scholar
  394. Verigin, B.V., Belova, N.V., Makeeva, A.P., and Emelyanova, N.G., Spawning Features of Far East. Herbivorous Fish in Circular Tanks, Vopr. Ikhtiol., 1999, vol. 39, no. 5, pp. 684–691 [J. Ichthyol. (Engl. Transl.), 1999, vol. 39, no. 8, pp. 657–664].Google Scholar
  395. Vladykov, V.D., Renaud, C.B., and Laframboise, S., Breeding Tubercles in Three Species of Gadus (Cods), Can. J. Fish. Sci., 1985, vol. 42, pp. 608–615.CrossRefGoogle Scholar
  396. Von der Emde, G. and Bleckmann, H. Finding Food: Senses Involved in Foraging for Insect Larvae in the Electric Fish Gnathonemus petersii, J. Exp. Biol., 1998, vol. 201, pp. 969–980.PubMedGoogle Scholar
  397. Walton, A.G. and Moller, P., Maze Learning and Recall in a Weakly Electric Fish. Mormyrus rume proboscirostris Boulenger (Mormyridae, Teleostei). Ethology, 2010, vol. 116, pp. 904–919.CrossRefGoogle Scholar
  398. Watanabe, T., Sakamota, H., Abiru, M., and Yamashita, J., Development of a New Type of Dry Pellet for Yellowtail, Nippon Suisan Gakkaishi, 1991, vol. 57, pp. 891–897.CrossRefGoogle Scholar
  399. West, J.G. and Carter, S., Observations on the Development and Growth of the Epaulette Shark Hemiscyllium ocellatum (Bonnaterre) in Captivity, J. Aquacult. Aquat. Sci., 1990, vol. 5, no. 3, pp. 111–117.Google Scholar
  400. Whitear, M., The Innervation of the Skin of Teleost Fishes, Quart. J. Microscop. Sci., 1952, vol. 93, part 3, pp. 289–305.Google Scholar
  401. Whitear, M., The Free Nerve Endings in Fish Epidermis, J. Zool. London, 1971a, vol. 163, pp. 231–236.CrossRefGoogle Scholar
  402. Whitear, M., Cell Specialization and Sensory Function in Fish Epidermis, J. Zool. London, 1971b, vol. 172, pp. 503–529.CrossRefGoogle Scholar
  403. Whitear, M. and Lane, E.B., Fine Structure of Merkel Cells in Lamprey, Cell. Tiss. Res., 1981, vol. 220, pp. 139–151.CrossRefGoogle Scholar
  404. Whitear, M. and Kotrschal, K., The Chemosensory Anterior Dorsal Fin in Rocklings (Gaidropsarus and Ciliata, Teleostei, Gadidae): Acticvity, Fiune Structure and Innervation, J. Zool. London, 1988, vol. 216, pp. 339–366.CrossRefGoogle Scholar
  405. Whitear, M., Merkel Cells in Lower Vertebrates, Arch. Histol. Cytol., 1989, vol. 52, Suppl., pp. 415–422.CrossRefGoogle Scholar
  406. Whitear, M., Collagen Turnover in Regenerating Barbels of a Catfish, Arch. Histol. Cytol., 1990, vol. 53, pp. 283–286.PubMedCrossRefGoogle Scholar
  407. Whitney, N.M. and Motta, P.J., Cleaner Host Posing Behavior of Whitetip Reef Sharks (Triaenodon obesus) in a Swarm of Hyperiid Amphipods. Coral Reefs, 2007, vol. 27, no. 2, p. 363.Google Scholar
  408. Wiley, J.L. and Collette, B.B., Breeding Tubercles and Contact Organs in Fishes: Their Occurrence, Structure, and Significance, Bull. Amer. Mus. Nat. Hist., 1970, vol. 149, pp. 143–216.Google Scholar
  409. Wilga, C.D. and Motta, P.J., Durophagy in Sharks: Feeding Mechanisms of the Hammerhead Sphyrna tiburo, J. Exp. Biol., 2000, vol. 203, pp. 2781–2796.PubMedGoogle Scholar
  410. Wilkens, H., Convergent Adaptations to Cave Life in the Rhamdia laticauda Catfish Group (Pimelodidae, Teleostei), Environm. Biol. Fishes, 2001, vol. 62, pp. 251–261.CrossRefGoogle Scholar
  411. Wilkens, L.A., Russel, D., Pei, X., Gurgens, C., The Puddlefish Rostrum Functions as an Electrosensory Antenna in Plankton Feeding, Proc. Roy. Soc. London, B, 1997, vol. 264, pp. 1723–1729.CrossRefGoogle Scholar
  412. Wilkens, L.A., Wettring, B., Wagner, E., et al., Prey Detection in Selective Plankton Feeding by the Paddlefish: is the Electric Sense Sufficient? J. Exp. Biol., 2001, vol. 204, pp. 1381–1389.PubMedGoogle Scholar
  413. Williams, J.A., Barrois, A., Gatchalin, C., et al., Programmed Cell Death in Zebrafish Rohon Beard Neurons is Influenced by RrkC1/NT-3 Signaling, Dev. Biol., 2000, vol. 226, pp. 220–230.PubMedCrossRefGoogle Scholar
  414. Windsor, S.P., Tan, D., and Montgomery, J.C., Swimming Kinematics and Hydrodynamics Imaging in the Blind Mexican Cave Fish (Astyanax fasciatus), J. Exp. Biol., 2008, vol. 211, pp. 2950–2959.PubMedCrossRefGoogle Scholar
  415. Woodhead, P.M.J., Reactions of salmonid Larvae to Light, J. Exp. Biol., 1957, vol. 34, no. 3, pp. 402–416.Google Scholar
  416. Wourms, J.P., Reproduction and Development in Chondrichthyan Fishes, Amer. Zool., 1977, vol. 17. pp. 379–410.Google Scholar
  417. Wullimann, M.F., The Central Nervous System, in The Physiology of Fishes, Evans, D.H., Ed., Boca Raton; CRC Press, 1998, pp. 245–282.Google Scholar
  418. Wunderer, H.,Über Terminalkörperchen der Anamnien, Arch. Miskroskop. Anat. Entwicklungsmech., 1908, vol. 71, pp. 504–569.Google Scholar
  419. Wylie, C.R. and Paul, V.J., Chemical Defences in Three Species of Sinularia (Coeleneterata, Alcyonaria): Effects against Generalust Predators and the Butterfly Fish Chaetdon unimaculatus Bloch, J. Exp. Mar. Biol. Ecol., 1989, vol. 129, pp. 141–160.CrossRefGoogle Scholar
  420. Yamashita, S., Evans, R.E., and Hara, T.J., Specificity of the Gustatory Chemoreceptors for CO2 and H+ in Rainbow Trout (Oncorhynchus mykiss), Can. J. Fish. Aquat. Sci., 1989, vol. 46, pp. 1730–1734.CrossRefGoogle Scholar
  421. Youngbluth, M.J., Aspcts of Ecoogy and Ethology of the Cleaning Fish, Labroides phthirophagus Randall, Z. Tierpsychol., 1968, vol. 25, pp. 915–932.CrossRefGoogle Scholar
  422. Zaccone, G., Fasudo, S., and Ainis, L.,Distribution cells in the Determijed Histological patterns of the Paraneuronal Endocrine Skin, Gills, and the Airways of Fishes as by Immunohistochemical methods, Histochemical J., 1994, vol. 26, pp. 609–629.CrossRefGoogle Scholar
  423. Zaccone, G., Mauceri, A., Ainis, L., et al., Paraneurons in the Skin and Gills of Fioshes, Ichthyology: Recent Research Advances, Saxena, D.N., Ed., Enfield: Sci. Publ. Inc., 1999, pp. 417–447.Google Scholar
  424. Zeiske, E., Bartsch, P., and Hansen, A., Early Ontogeny of the Olfactopry Organ in a Basal Actinopterygian Fish: Polypterus, Brain Behav. Evol., 2009, vol. 73, pp. 259–272.PubMedCrossRefGoogle Scholar
  425. Zottoli, S.J., Comparative Morphology of the Mauther Cell in Fish and Amphibians, Neurobiology of Mauthner Cell, Faber, D.S. and Korn, H., Eds., New York: Raven, 1978, pp. 13–45.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations