Journal of Ichthyology

, Volume 46, Supplement 2, pp S235–S242 | Cite as

Variability of the behavioral laterality in Teleostei (Pisces)

  • V. A. Nepomnyashchikh
  • E. I. Izvekov


Factors causing variability of behavioral laterality in Teleostei are reviewed. The laterality has been revealed in many fish species belonging to various families. The best ever demonstrated example of the laterality is the different use of the right and left eyes when a fish responds to different visual objects. Magnitude and sign of the laterality differ in fishes of different species, gender, and age. Also, an observed laterality depends on how familiar a stimulus is to fishes and what it means to them, as well as their motivational level and various behavioral traits. Therefore, comparisons of the laterality among different fish species should be based on experimental methods that also take into account those behavioral differences among them that are not directly linked to the laterality.


Avoidance Response Rotational Laterality Fish Behavior Left Turn Individual Laterality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. J. Andrew and J. A. S. Watkins, “Evidence for Cerebral Lateralization from Senses Other Than Vision,” in Comparative Vertebrate Lateralization, Ed. by L.J. Rogers and R.J. Andrew (Cambridge Univ. Press, Cambridge, 2002), pp. 365–382.Google Scholar
  2. 2.
    K. A. Barth, A. Miklosi, J. Watkins, et al., “Fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses,” Curr. Biol. 15, 844–850 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    V. L. Bianki, Brain Asymmetry in Animals (Nauka, Moscow, 1985) [in Russian].Google Scholar
  4. 4.
    V. L. Bianki and E. B. Filippova, “Evolution of the Functional Brain Asymmetry,” in Guide on Physiology. Behavioral Physiology. Neurobiological Regularities (Nauka, Leningrad, 1987), pp. 304–352.Google Scholar
  5. 5.
    A. Bisazza, C. Cantalupo, M. Capocchiano, and G. Vallortigara, “Population Lateralisation and Social Behaviour: A Study with 16 Species of Fish,” Laterality 5, 269–284 (2000).PubMedCrossRefGoogle Scholar
  6. 6.
    A. Bisazza, C. Cantalupo, and G. Vallortigara, “Lateral Asymmetries During Escape Behaviour in a Species of Teleost Fish (Jenynsia lineata),” Physiol. Behav. 61, 31–35 (1997a).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Bisazza, M. Dadda, and C. Cantalupo, “Further Evidence for Mirror-Reversed Laterality in Lines of Fish Selected for Leftward or Rightward Turning When Facing a Predator Model,” Behav. Brain Res. 156, 65–71 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Bisazza and A. De Santi, “Lateralization of Aggression in Fish,” Behav. Brain Res. 141, 131–136 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    A. Bisazza, A. De Santi, and G. Vallortigara, “Laterality and Cooperation: Mosquitofish Move Closer to a Predator When the Companion is on the Left Side,” Anim. Behav. 57, 1145–1149 (1999).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Bisazza, L. Facchin, R. Pignatti, and G. Vallortigara, “Lateralization of Detour Behaviour in Poeciliid Fishes: The Effect of Species, Gender and Sexual Motivation,” Behav. Brain Res. 91, 157–164 (1998a).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Bisazza, G. Lippolis, and G. Vallortigara, “Lateralization of Ventral Fins Use During Object Exploration in the Blue Gourami (Trichogaster trichopterus),” Physiol. Behav. 72, 575–578 (2001).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Bisazza, R. Pignatti, and G. Vallortigara, “Detour Tests Reveal Task-and Stimulus-Specific Behavioural Lateralization in Mosquitofish (Gambusia holbrooki),” Behav. Brain Res. 89, 237–242 (1997b).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Bisazza, R. Pignatti, and G. Vallortigara, “Laterality in Detour Behaviour: Interspecific Variation in Poeciliid Fishes,” Anim. Behav. 54, 1273–1281 (1997c).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Bisazza, L. J. Rogers, and G. Vallortigara, “The Origins of Cerebral Asymmetry: A Review of Evidence of Behavioural and Brain Lateralization in Fishes, Reptiles and Amphibians,” Neurosci. Biobehav. Rev. 22, 411–426 (1998b).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Bisazza and G. Vallortigara, “Rotational Bias in Mosquitofish (Gambusia holbrooki): The Role of Lateralization and Sun-Compass Navigation,” Laterality 1, 161–175 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Bisazza and G. Vallortigara, “Rotational Swimming Preferences in Mosquitofish (Gambusia holbrooki): Evidence for Brain Lateralization?,” Physiol. Behav. 62, 1405–1407 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    P. G. Borisov, “Fish Behavior Under the Effects of Artificial Light,” in Proceedings of the Conference on Behavior and Scouting of Fish (Akad. Nauk SSSR, Moscow, 1955), Issue 5, pp. 121–143.Google Scholar
  18. 18.
    C. Brown, C. Gardner, and V. A. Braithwaite, “Population Variation in Lateralized Eye Use in the Poeciliid Brachyraphis episcope,” Proc. R. Soc. London, Ser. B. (Suppl. 04BL0121), S1–S3 (2004).Google Scholar
  19. 19.
    T. Burt de Perera and V. A. Braithwaite, “Laterality in a Non-Visual Sensory Modality — the Lateral Line of Fish,” Curr. Biol. 15, 241–242 (2005).CrossRefGoogle Scholar
  20. 20.
    C. Cantalupo, A. Bisazza, and G. Vallortigara, “Lateralization of Predator-Evasion Response in a Teleost Fish (Girardinus falcatus),” Neuropsychologia 33, 1637–1646 (1995).PubMedCrossRefGoogle Scholar
  21. 21.
    C. Cantalupo, A. Bisazza, and G. Vallortigara, “Lateralization of Displays During Aggressive and Courtship Behaviour in the Siamese-Fighting Fish (Betta splendens),” Physiol. Behav. 60, 249–252 (1996).PubMedCrossRefGoogle Scholar
  22. 22.
    A. De Santi, V. A. Sovrano, A. Bisazza, and G. Vallortigara, “Mosquitofish Display Differential Left-and Right-Eye Use During Mirror-Image Scrutiny and Predator-Inspection Responses,” Anim. Behav. 61, 305–310 (2001).CrossRefGoogle Scholar
  23. 23.
    M. L. Fine, D. McElroy, J. Rafi, et al., “Lateralization of Pectoral Stridulation Sound Production in the Channel Catfish,” Physiol. Behav. 60, 753–757 (1996).PubMedGoogle Scholar
  24. 24.
    S. I. Gleizer, “Functional Asymmetry in Fish Behavior,” Zh. Vyssh. Nervn. Deyat. 31(2), 431–434 (1981).Google Scholar
  25. 25.
    E. Gonçalves and K. Hoshino, “Behavioral Lateralization in the Freshwater Fish Oreochromis niloticus,” in Annals of the 5th Annual Meeting of the Federation of Brazilian Societies for Experimental Biology (M.G., Caxambu, 1990a), p. 25.Google Scholar
  26. 26.
    E. Gonçalves and K. Hoshino, “Lateralized Behavior of Nile Tilapia in Natural Conditions,” in Annals of the 5th Annual Meeting of the Federation of Brazilian Societies for Experimental Biology (M.G., Caxambu, 1990b), p. 423.Google Scholar
  27. 27.
    B. A. Heuts, “Lateralization of Trunk Muscle Volume, and Lateralization of Swimming Turns of Fish Responding to External Stimuli,” Behav. Proc. 47, 113–124 (1999).CrossRefGoogle Scholar
  28. 28.
    A. I. Kuznetsov, “Study of Fish Behavior in Light Fields,” Izv. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 96, 195–198 (1975).Google Scholar
  29. 29.
    V. V. Lapkin, A. G. Poddubnyi, and A. M. Svirskii, “Seasonal Changes in Fish Behavior at Dense Stocking,” Vopr. Ikhtiol. 29(1), 171–172 (1989).Google Scholar
  30. 30.
    L. E. Levin and O. Gonzalez, “Endogenous Rectilinear Guidance in Fish — Is It Adjusted by Reference to the Sun?,” Behav. Proc. 31, 247–345 (1994).CrossRefGoogle Scholar
  31. 31.
    A. Miklòsi and R. J. Andrew, “Right Eye Use Associated with Decision to Bite in Zebrafish,” Behav. Brain Res. 105, 199–205 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Miklòsi, R. J. Andrew, and S. Gasparini, “Role of Right Hemifield in Visual Control of Approach to Target in Zebrafish,” Behav. Brain Res. 122, 57–65 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Miklòsi, R. J. Andrew, and H. Savage, “Behavioural Lateralisation of the Tetrapod Type in the Zebrafish (Brachydanio rerio),” Physiol. Behav. 63, 127–135 (1997).PubMedCrossRefGoogle Scholar
  34. 34.
    V. A. Nepomnyashchikh, “Fractal Structure of Behavior of Goldfish Carassius auratus L. (Cyprinidae: Pisces),” Zh. Obshch. Biol. 59(5), 513–530 (1998).Google Scholar
  35. 35.
    V. A. Nepomnyashchikh, “Model of Asymmetry of the Direction of Movement of Goldfish,” in Proceedings of the International Conference on Fish Behavior, Borok, Russia, 2005 (AKVAROS, Moscow, 2005), pp. 370–374.Google Scholar
  36. 36.
    V. A. Nepomnyashchikh and V.A. Gremyachikh, “Ordered Behavior of Oreochromis mossambicus Peters (Cichlidae: Pisces) Under Conditions of an Open Field,” Zh. Obshch. Biol. 53(5), 730–735 (1992).Google Scholar
  37. 37.
    V. A. Nepomnyashchikh and V. A. Gremyachikh, “Relationship Between the Trajectory Structure and Asymmetry of Choice of the Movement Direction in Tilapia Oreochromis mossambicus Peters (Cichlidae),” Zh. Obshch. Biol. 54(5), 619–626 (1993).Google Scholar
  38. 38.
    V. A. Nepomnyashchikh and V. A. Gremyachikh, “Model of Exploratory Behavior in Cyprinus carpio L. and Carassius auratus L. (Cyprinidae, Pisces),” Zh. Obshch. Biol. 58(1), 60–69 (1997).Google Scholar
  39. 39.
    I. E. Permitin and V. V. Polovkov, “On the Possibility of Using Artificial Light for Attracting Fish in Inland Water Bodies,” Izv. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz. 96, 199–202 (1975).Google Scholar
  40. 40.
    V. A. Sovrano, A. Bisazza, and G. Vallortigara, “Lateralization of Response to Social Stimuli in Fishes: A Comparison between Different Methods and Species,” Physiol. Behav. 74, 237–244 (2001).PubMedCrossRefGoogle Scholar
  41. 41.
    V. A. Sovrano, C. Rainoldi, A. Bisazza, and G. Vallortigara, “Roots of Brain Specializations: Preferential Left-Eye Use During Mirror-Image Inspection in Six Species of Teleost Fish,” Behav. Brain Res. 106, 175–180 (1999).CrossRefGoogle Scholar
  42. 42.
    Y. Suyehiro and M. Takizawa, “On the Swimming Direction of Fishes in the Circular Tank,” Ann. Rep. 1968. Keikyu Aburatsubo Marine Park Aquarium, No. 1. p. 43 (1968).Google Scholar
  43. 43.
    G. Vallortigara, L. J. Rogers, and A. Bisazza, “Possible Evolutionary Origins of Cognitive Brain Lateralization,” Brain Res. Rev. 30, 164–175 (1999).PubMedCrossRefGoogle Scholar
  44. 44.
    J. Watkins, A. Miklosi, and R. J. Andrew, “Early Asymmetries in the Behaviour of Zebrafish Larvae,” Behav. Brain Res. 151, 177–183 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. A. Nepomnyashchikh
    • 1
  • E. I. Izvekov
    • 1
  1. 1.Papanin Institute of Biology of Inland WatersRussian Academy of SciencesBorok, Nekouzskii raion, Yaroslavskaya oblastRussia

Personalised recommendations