Advertisement

Journal of Ichthyology

, Volume 46, Supplement 1, pp S84–S96 | Cite as

Interrelationships of Gasterosteiformes (Actinopterygii, Percomorpha)

  • Y. Keivany
  • J. S. Nelson
Article

Abstract

Phylogenetic relationships of Gasterosteiformes were studied using osteological examination of representatives of 11 families of gasterosteiform fishes, as ingroups, and 5 families of other smegmamorph fishes (Atheriniformes, Elassomatiformes, and Synbranchiformes), as outgroups. Based on phylogenetic analysis of 110 informative osteological characters, nine synapomorphies were found to unite all Gasterosteiformes and support was provided to the hypothesis that the order Gasterosteiformes (including Hypoptychidae and Indostomidae) is a monophyletic group. Furthermore, based on the synapomorphies provided for the subgroups, three suborders in Gasterosteiformes are recognized: Hypoptychoidei, Gasterosteoidei, and Syngnathoidei.

Keywords

Sister Group Monophyletic Group Uncinate Process Occipital Condyle California Academy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. E. Banister, “The Anatomy and Taxonomy of Indostomus paradoxus Prashad & Mukerji,” Bull. Br. Mus. Nat. Hist. (Zool.) 19, 179–209 (1970).Google Scholar
  2. 2.
    P. S. Bowne, The Systematic Position of Gasterosteiformes. PhD Dissertation (Department of Zoology, University of Alberta, Edmonton, 1985).Google Scholar
  3. 3.
    P. S. Bowne, “Systematics and Morphology of the Gasterosteiformes,” in Evolutionary Biology of the Threespine Stickleback (Oxford University Press, Oxford, 1994), pp. 28–60.Google Scholar
  4. 4.
    B. Bremer, “The Limits of Amino Acid Sequence Data in Angiosperm Phylogenetic Reconstruction,” Evolution 42, 795–803. (1988).CrossRefGoogle Scholar
  5. 5.
    B. Bremer, “Branch Support and Tree Stability,” Cladistics 10, 295–304 (1994).CrossRefGoogle Scholar
  6. 6.
    R. Britz and G. D. Johnson, ““Paradox Lost” Skeletal Ontogeny of Indostomus paradoxus and Its Significance for the Phylogenetic Relationships of Indostomidae (Teleostei, Gasterosteiformes),” Am. Mus. Nov., No. 3382, 1–43 (2002).Google Scholar
  7. 7.
    W. J. Chen, C. Bonillo, and G. Lecointre, “Repeatability of Clades as a Criterion of Reliability: A Case Study for Molecular Phylogeny of Acanthomorpha (Teleostei) with Larger Number of Taxa,” Mol. Phylogenet. Evol. 26,(2), 262–288 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    T. Eriksson, AutoDecay. Ver. 4.0 (Program Distributed by the Author) (Bergius Foundation, Royal Swedish Academy of Sciences, Stockholm, 1998).Google Scholar
  9. 9.
    W. N. Eschmeyer, Catalog of the Genera of Recent Fishes (California Academy of Sciences, San Francisco, 1990).Google Scholar
  10. 10.
    J. Felsenstein, “Confidence Limits on Phylogenies: An Approach Using the Bootstrap,” Evolution 39, 783–791 (1985).CrossRefGoogle Scholar
  11. 11.
    P. L. Forey, C. J. Humphries, I. L. Kitching, R. W. Scotland, D. J. Siebert, and D. M. Williams, Cladistics, a Practical Course in Systematics (Oxford University, Oxford, 1992).Google Scholar
  12. 12.
    K. Fujita, The Caudal Skeleton of Teleostean Fishes (Tokai University Press, 1990).Google Scholar
  13. 13.
    W. A. Gosline, Functional Morphology and Classification of Teleost Fishes (The University Press of Hawaii, Honolulu, 1971).Google Scholar
  14. 14.
    P. H. Greenwood, D. E. Rosen, S. H. Weitzman, and G. S. Myers, “Phyletic Studies of Teleostean Fishes, with a Provisional Classification of Living Forms,” Bull. Am. Mus. Nat. Hist. 131, 339–456 (1966).Google Scholar
  15. 15.
    W. Hennig, “Phylogenetic Systematics” (University of Illinois Press, Urbana, 1966).Google Scholar
  16. 16.
    H. Ida, “Removal of the Family Hypoptychidae from the Suborder Ammodytoidei, Order Perciformes, to the Suborder Gasterosteoidei, Order Syngnathiformes,” Jpn. J. Ichthyol. 23, 33–42 (1976).Google Scholar
  17. 17.
    G. D. Johnson and C. Patterson, “Percomorph Phylogeny: A Survey of Acanthomorphs and a New Proposal,” Bull. Mar. Sci. 52, 554–626 (1993).Google Scholar
  18. 18.
    G. D. Johnson and V. G. Springer, “Elassoma: Another Look,” in Abstracts of the 77th ASIH Annual Meeting (University of Washington, Seattle, 1997), p. 176.Google Scholar
  19. 19.
    W. J. Jones and J. M. Quatrro, “Phylogenetic Affinities of Pygmy Sunfishes (Elassoma) Inferred from Mitochondrial DNA Sequences,” Copeia, No. 4, 470–474 (1999).Google Scholar
  20. 20.
    G. V. Lauder and K. F. Liem, “The Evolution and Inter-relationships of the Actinopterygian Fishes,” Bull. Mus. Comp. Zool. 150, 95–197 (1983).Google Scholar
  21. 21.
    W. P. Maddison, M. J. Donoghue, and D. R. Maddison, “Outgroup Analysis and Parsimony,” Syst. Zool. 33, 83–103 (1984).CrossRefGoogle Scholar
  22. 22.
    W. P. Maddison and D. R. Maddison, MacClade-Analysis of Phylogeny and Character Evolution (Sinauer Associates, Inc., 1992).Google Scholar
  23. 23.
    D. E. McAllister, “The Evolution of Branchiostegals and Classification of Teleostome Fishes,” Bull. Natl. Mus. Can. 221, 1–239 (1968).Google Scholar
  24. 24.
    M. Miya, H. Takeshima, H. Endo, N. B. Ishiguro, J. G. Inoue, T. Mukai, T. P. Satoh, M. Yamaguchi, and K. Akira, “Major Patterns of Higher Teleostean Phylogenies: A new Perspective Based on 100 Complete Mitochondrial DNA Sequences,” Mol. Phylogenet. Evol. 26(1), 121–138 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    J. S. Nelson, “Comparison of the Pectoral and Pelvic Skeleton and of Some Other Bones and Their Phylogenetic Implications in the Aulorhynchidae and Gasterosteidae (Pisces),” J. Fish. Res. Board Can. 28, 427–442 (1971).Google Scholar
  26. 26.
    J. S. Nelson, Fishes of the World, 2nd ed. (John Wiley & Sons, New York, 1984).Google Scholar
  27. 27.
    J. S. Nelson, Fishes of the World, 3rd ed. (John Wiley & Sons, New York, 1994).Google Scholar
  28. 28.
    J. W. Orr, Phylogenetic Relationships of Gasterosteiform Fishes (Teleostei: Acanthomorpha). PhD Dissertation. (Department of Zoology, University of Washington, Seattle, 1995).Google Scholar
  29. 29.
    L. R. Parenti, “Relationships of Atherinomorph Fishes (Teleostei),” Bull. Mar. Sci. 52, 170–196 (1993).Google Scholar
  30. 30.
    L. R. Parenti and J. Song, Phylogenetic Significance of the Pectoral-Pelvic Fin Association in Acanthomorph Fishes: A Reassessment Using Comparative Neuroanatomy in Interrelationships of Fishes (Academic Press, 1996), pp. 427–444.Google Scholar
  31. 31.
    T. W. Pietsch, “Evolutionary Relationships of the Sea Moths (Teleostei: Pegasidae) with a Classification of Gasterosteiform Families,” Copeia, 517–529 (1978).Google Scholar
  32. 32.
    W. L. Smith and W. C. Wheeler, “Polyphyly of the Mail-Cheeked Fishes (Teleostei: Scorpaeniformes): Evidence from Mitochondrial and Nuclear Sequence Data. Mol. Phylogenet. Evol. 32(1), 627–646 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    E. E. Strong, E.E. and D. Lipscomb, “Character Coding and Inapplicable Data,” Cladistics 15, 363–371 (1999).CrossRefGoogle Scholar
  34. 34.
    D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10 for Macintosh (Sinauer Associates, Inc., Sunderland, 2002).Google Scholar
  35. 35.
    W. R. Taylor and G. C. Van Dyke, “Revised Procedures for Staining and Clearing Small Fishes and Other Vertebrates for Bone and Cartilage Study,” Cybium 9, 107–119 (1985).Google Scholar
  36. 36.
    L. E. Watrous and G. D. Wheeler, “The Out-Group Comparison Method,” Syst. Zool. 30, 1–11 (1981).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • Y. Keivany
    • 1
  • J. S. Nelson
    • 2
  1. 1.Department of Fisheries, Faculty of Natural ResourcesIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmonton, AlbertaCanada

Personalised recommendations