Physics of Metals and Metallography

, Volume 120, Issue 10, pp 930–935 | Cite as

Magnetic State and Phase Composition of Co3C Nanoparticles

  • K. N. MikhalevEmail author
  • A. Yu. Germov
  • E. Yu. Medvedev
  • A. P. Gerashchenko
  • A. E. Ermakov
  • M. A. Uimin
  • S. I. Novikov
  • T. V. D’yachkova
  • A. P. Tyutyunnik
  • Yu. G. Zainulin


Nanoparticles Co3C were prepared using solid-phase synthesis under high pressure. The phase composition of the nanoparticles has been analyzed; the magnetization has been measured and 59Со NMR spectra in a local field have been recorded. It is shown that Co3C is a ferromagnet with the Curie temperature TC = 498(10) K. The hyperfine fields and components of electric field gradient tensor were determined for two nonequivalent Co positions in the carbide. The obtained hyperfine fields correspond to the spin state of Co ions S = 1.


magnetization nuclear magnetic resonance carbides magnetic nanoparticles 



This study was performed in terms of state assignments of the Ministry of Science and Higher Education of the Russian Federation (themes Funktsiya, no. АААА-А19-119012990095-0, Magnit, no. АААА-А18-118020290129-5, and Novye funktsional’nye materially dlya perspektivnykh tekhnologii, no. АААА-А19-119031890025-9). The study was partially supported by the Russian Foundation for Basic Research (project no. 16-02-00416).


  1. 1.
    E. G. Sharoyan, A. A. Mirrahkanyan, H. T. Gyulasaryan, A. N. Kocheryan, and A. S. Makuryan, “FMR and EPR in Ni@C nanocomposites: size and concentration effects,” J. Contemp. Phys. 52, 147–154 (2017).CrossRefGoogle Scholar
  2. 2.
    S. D. Bader, “Colloquium: opportunities in nanomagnetism,” Rev. Mod. Phys. 78, 1–15 (2006).CrossRefGoogle Scholar
  3. 3.
    X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, “Shape control of CdSe nanocrystals,” Nature 404, 59–61 (2000).CrossRefGoogle Scholar
  4. 4.
    S. Odenbach, “Recent progress in magnetic fluid research,” J. Phys.: Condens. Matter. 16, 1135–1150 (2004).Google Scholar
  5. 5.
    S. Momet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical diagnosis and therapy,” J. Mater. Chem. 14, 2161–2175 (2004).CrossRefGoogle Scholar
  6. 6.
    D. Ung, Y. Soumare, N. Chakroune, G. Viau, M.‑J. Vaulay, V. Richard, and F. Fievet, “Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets,” Chem. Mater. 19, 2084–2094 (2007).CrossRefGoogle Scholar
  7. 7.
    B. Viswanath, P. Kundu, A. Halder, and N. Ravishankar, “Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation,” J. Phys. Chem, 113, 1466–1473 (2009).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, G. S. Chaubey, C. Rong, Y. Ding, N. Poudyal, P. Tsai, Q. Zhang, and J. P. Liu, “Controlled synthesis and magnetic properties of hard magnetic CoxC (x = 2, 3) nanocrystals,” J. Magn. Magn. Mater. 323, 1495–1500 (2011).CrossRefGoogle Scholar
  9. 9.
    K. J. Carroll, Z. J. Huba, S. R. Spurgeon, M. Qian, S. N. Khanna, D. M. Hudgins, M. L. Taheri, and E. E. Carpenter, “Magnetic properties of Co2C and Co3C nanoparticles and their assemblies,” Appl. Phys. Lett. 101, 012409 (2012).CrossRefGoogle Scholar
  10. 10.
    V. G. Harris, Y. Chen, A. Yang, S. Yoon, Z. Chen, A. L. Geiler, J. Gao, C. N. Chinnasamy, L. Y. Levis, C. Vittoria, E. E. Karpenter, K. J. Carroll, R. Goswami, M. A. Willard, L. Kurihara, M. Gioka, and O. Kalogirou, “High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material,” J. Phys. D: Appl. Phys. 43, 165003 (2010).CrossRefGoogle Scholar
  11. 11.
    B. H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210–213 (2001).CrossRefGoogle Scholar
  12. 12.
    A. C. Larson and R. B. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Rep. LAUR 86, 748–753 (2004).Google Scholar
  13. 13.
    T. Ya. Kosolapova, Carbides (Metallurgiya, Moscow, 1968) [in Russian].Google Scholar
  14. 14.
    K. N. Mikhalev, A. Yu. Germov, M. A. Uimin, A. E. Yermakov, A. S. Konev, S. I. Novikov, V. S. Gaviko, and Yu. S. Ponosov, “Magnetic state and phase composition of carbon-encapsulated Co@C nanoparticles according to 59Co, 13C NMR data and Raman spectroscopy,” Mater. Res. Express. 5, 055033 (2018).CrossRefGoogle Scholar
  15. 15.
    I. S. Grigoriev and E. Z. Meilikhov, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, 1997)Google Scholar
  16. 16.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Izdatel’stvo Inostrannoi Literatury, Moscow, 1963).Google Scholar
  17. 17.
    A. P. Gerashchenko, S. V. Verkhovskii, A. F. Sadykov, A. G. Smol’nikov, Yu. V. Piskunov, and K. N. Mikhalev, Certificate of State. Registration of the Software “Simul” no. 2018663091 (October 22, 2018).Google Scholar
  18. 18.
    K. N. Mikhalev, A. Yu. Germov, A. E. Ermakov, M. A. Uimin, A. L. Buzlukov, and O. M. Samatov, “Crystal structure and magnetic properties of Al2O3 nanoparticles by 27Al NMR data,” Phys. Solid State 59, 514–519 (2017).CrossRefGoogle Scholar
  19. 19.
    E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro and Antiferromagnets (Nauka, Moscow, 1969) [in Russian].Google Scholar
  20. 20.
    R. E. Watson and E. J. Freeman, Hyperfine Interactions in Solids, Ed. by A. J. Freeman, R. B. Frankel (Academic, New York, 1967; Nauka, Moscow, 1970).Google Scholar
  21. 21.
    M. Kawakami, T. Hihara, Y. Koi, and T. Wakiyama, “The 59Co nuclear magnetic resonance in hexagonal cobalt,” J. Phys. Soc. Jpn. 33, 1591–15968 (1972).CrossRefGoogle Scholar
  22. 22.
    A. S. Andreev, O. B. Lapina, and S. V. Cherepanova, “New insight into cobalt metal powder internal field 59Co NMR spectra,” Appl. Magn. Reson. 45, 1009–1017 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. N. Mikhalev
    • 1
    Email author
  • A. Yu. Germov
    • 1
  • E. Yu. Medvedev
    • 1
  • A. P. Gerashchenko
    • 1
  • A. E. Ermakov
    • 1
  • M. A. Uimin
    • 1
  • S. I. Novikov
    • 1
  • T. V. D’yachkova
    • 2
  • A. P. Tyutyunnik
    • 2
  • Yu. G. Zainulin
    • 2
  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations