Advertisement

Physics of Metals and Metallography

, Volume 120, Issue 10, pp 976–980 | Cite as

Mechanical Properties of Tube Steel after Full Hardening with Austenite Stabilization

  • A. N. MakovetskyEmail author
  • D. A. Mirzaev
  • L. I. Yusupova
  • A. O. Krasnotalov
  • A. A. Mirzoev
  • S. A. Sozykin
STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • 9 Downloads

Abstract

The stabilization mechanism of residual austenite in high-alloyed steel with 13% chromium content upon quenching partitioning treatment is studied in this work. It is established that the mechanical properties after such thermal treatment are caused by the opposite stabilization and tempering effects and largely depend on the position of the cooling stop temperature relative to the martensitic point, which determines the amount of both stabilized austenite and martensite tempered at the same temperature.

Keywords:

austenite stabilization quenching partitioning 

Notes

FUNDING

This work was carried out within the framework of a state program of the Ministry of Science and Higher Education of the Russian Federation no. 3.9660.2017/BCh.

REFERENCES

  1. 1.
    F. B. Pickering, Physical Metallurgy and the Design of Steels (Applied Science, London 1978; Metallurgiya, Moscow, 1982).Google Scholar
  2. 2.
    F. F. Khimushin, Stainless Steels (Metallurgizdat, Moscow, 1969) [in Russian].Google Scholar
  3. 3.
    D. A. Mirzaev, A. S. Bezik, S. A. Sozykin, and A. N. Makovetskii, “Influence of intercritical quenching on the mechanical properties of steel 13Kh11N2V2MF,” Vestnik MGTU im. G.I. Nosova, No. 4, 45–49 (2018).Google Scholar
  4. 4.
    A. K. Laev, “Effect of alloying and heat treatment on the structure and properties of corrosion-resistant martensitic and super-martensitic steels for the manufacture of oil and gas pipes,” Abstract for Candidate’s Dissertation (YuUrGU, Chelyabinsk, 2016) [in Russian].Google Scholar
  5. 5.
    I. Yu. Pyshmintsev, S. M. Bityukov, K. A. Laev, A. N. Boryakova, and D. A. Manannikov, “Investigation of super-chrome steels intended for the manufacture of corrosion-resistant high-strength oil pipe tubes,” Chern. Metall., No. 2 (1322), 51–56 (2010).Google Scholar
  6. 6.
    M. A. Smirnov, I. Yu. Pyshmintsev, K. A. Laev, and A. M. Akhmed’yanov, “The effect of high-temperature thermomechanical processing on the properties of high-chromium steel,” Vestn. YuUrGU, Ser. Metallurgiya, No. 39, 85–88 (2012).Google Scholar
  7. 7.
    K. A. Malyshev, N. A. Borodina, and V. A. Mirmel’shtein, “Stabilization of austenite at temperatures above the range of martensitic transformation,” Fiz. Met. Metalloved. 11, 277–283 (1956).Google Scholar
  8. 8.
    K. A. Malyshev and E. D. Butakova, “Magnetometric study of austenite stabilization in alloys,” Fiz. Met. Metalloved. 30, 602–605 (1970).Google Scholar
  9. 9.
    M. E. Blanter and B. G. Serebrennikova, “On the nature of thermal stabilization of austenite,” Metalloved. Term. Obrab. Met., No. 2, 7–9 (1972).Google Scholar
  10. 10.
    M. E. Blanter and B. G. Serebrennikova, “On the nature of thermal stabilization of austenite,” in Diffusion, Phase Transformations, Mechanical Properties of Metals and Alloys. Scientific Works of All-Union Absentee Machine-Building Institute, Vol. 1 (VZMI, Moscow, 1973), pp. 39–46 [in Russian].Google Scholar
  11. 11.
    L. N. Belyakov and V. I. Kozlovskaya, “Retained austenite in martensitic stainless steels,” Metalloved. Term. Obrab. Met., No. 2, 52–54 (1965).Google Scholar
  12. 12.
    J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, “Carbon partitioning into austenite after martensite transformation,” Acta Mater. 51, 2611–2622 (2003).CrossRefGoogle Scholar
  13. 13.
    J. Mola and B. C. de Cooman, “Quenching and partitioning (Q&P) processing of martensitic stainless steels,” Met. Mater. Soc. ASM Int. 44A, 22 (2013).Google Scholar
  14. 14.
    J. G. Speer, F. C. R. Assuncao, D. K. Matlock, and D. V. Edmonds, “The “quenching and partitioning” process: Background and recent progress,” Mater. Res. 8, 417–423 (2005).CrossRefGoogle Scholar
  15. 15.
    J. G. Speer, D. K. Matlock, B. C. DeCooman, and J. G. Schroth, “Comments on ‘‘on the definitions of paraequilibrium and orthoequilibrium’’ by M. Hillert and J. Agren,” Scr. Mater. 50, 697–699,” Scr. Mater. 52, 83–85 (2004).CrossRefGoogle Scholar
  16. 16.
    D. A. Mirzaev, S. A. Sozykin, A. N. Makovetskii, A. O. Krasnotalov, and L. I. Yusupova, “Dilatometric study of the formation of martensite and the effects of austenite stabilization in high-chromium 15 Kh13N2 steel,” Phys. Met. Metallogr., 2019. (In Press).Google Scholar
  17. 17.
    Yu. I. Ustinovshchikov, “On the origin of brittleness in the process of high-temperature tempering of chromium steels,” Fiz. Met. Metalloved. 44, 144–151 (1977).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Makovetsky
    • 1
    Email author
  • D. A. Mirzaev
    • 2
  • L. I. Yusupova
    • 1
  • A. O. Krasnotalov
    • 1
    • 2
  • A. A. Mirzoev
    • 2
  • S. A. Sozykin
    • 2
  1. 1.Chelyabinsk Tube Rolling PlantChelyabinskRussia
  2. 2.South Ural State UniversityChelyabinskRussia

Personalised recommendations