Physics of Metals and Metallography

, Volume 119, Issue 13, pp 1249–1253 | Cite as

First-Principles Calculations of the Electronic Structure of Imperfect Crystals in the Coherent Potential Approximation

  • M. A. KorotinEmail author
  • E. Z. Kurmaev


The results of electronic structure calculations of imperfect crystals—nonstoichiometric metal oxides (TiO2 – x, TiO1 – x, Al2O3 – x) are reviewed. All calculations were performed within the density functional theory in the coherent potential approximation with vacancies randomly distributed in metal and oxygen sublattices. It is found that the deviations from stoichiometric composition are accompanied by appearance of vacancy induced electronic states inside the band gap of initial insulating oxides.


density functional theory coherent potential approximation nonstoichiometric metal oxides oxygen vacancies band gap 



The research was carried out within the state assignment of FASO of Russia (theme Electron АААА-А18-118020190098-5).


  1. 1.
    Thi-Thuy Nguen and Ju-Liang He, ”Preparation of titanium monoxide nanopowder by low-energy wet ball milling,” Adv. Power Techn. 27, 1868–1873 (2016).CrossRefGoogle Scholar
  2. 2.
    A. I. Gusev and S. Z. Nazarova, “Magnetic susceptibility of nonstoichiometric compounds of transition d‑metals,” Phys.–Usp. 48, 651–673 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Li, R. Lazzari, S. Chenot, and J. Jupille, “Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania,” Phys. Rev. 97, 041403(R) (2018).Google Scholar
  4. 4.
    D. Liu, S. J. Clark, and J. Robertson, “Oxygen vacancy levels and electron transport in Al2O3,” Appl. Phys. Lett. 96, 032905 (2010).CrossRefGoogle Scholar
  5. 5.
    M. A. Korotin, N. A. Skorikov, V. M. Zainullina, E. Z. Kurmaev, A. V. Lukoyanov, and V. I. Anisimov, “Electronic structure of nonstoichiometric compounds in the coherent potential approximation,” JETP Lett. 94, 806–810 (2012).CrossRefGoogle Scholar
  6. 6.
    W. Metzner and D. Vollhardt, “Correlated lattice fermions in d = ∞ dimensions,” Phys. Rev. Lett. 62, 324–327 (1989).CrossRefGoogle Scholar
  7. 7.
    P. Soven, “Coherent-potential model of substitutional disordered alloys,” Phys. Rev. 156, 809–813 (1967).CrossRefGoogle Scholar
  8. 8.
    M. A. Korotin, N. A. Skorikov, and A. O. Anokhin, “Electronic structure and magnetic properties of two-dimensional nonstoichiometric rutile,” Physica B: Condens. Matter 526, 14–20 (2017).CrossRefGoogle Scholar
  9. 9.
    M. A. Korotin, N. A. Skorikov, A. V. Lukoyanov, V. I. Anisimov, M. G. Kostenko, and A. A. Rempel’, “Coherent potential approximation simulation of the evolution of the electronic structure of titanium monoxide with the degree of vacancy ordering,” J. Exp. Theor. Phys. 119, 761–765 (2014).CrossRefGoogle Scholar
  10. 10.
    D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev. 113, 1222–1226 (1959).CrossRefGoogle Scholar
  11. 11.
    A. K. Ghosh, F. G. Wakim, and R. R. Addiss, Jr., ”Photoelectronic processes in rutile,” Phys. Rev. 184, 979–988 (1969).CrossRefGoogle Scholar
  12. 12.
    V. E. Henrich and R. L. Kurtz, “Surface electronic structure of TiO2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen,” Phys. Rev. B 23, 6280–6287 (1981).CrossRefGoogle Scholar
  13. 13.
    M. A. Korotin and E. Z. Kurnaev, “Electronic structure of aluminum oxide with oxygen vacancies,” Phys. Met. Metallogr. 119 (8), 707–712 (2018).Google Scholar
  14. 14.
    S. Nigo, M. Kubota, Y. Harada, T. Hirayama, S. Kato, H. Kitazawa, and G. Kido, “Conduction band caused by oxygen vacancies in aluminum oxide,” J. Appl. Phys. 112, 033711 (2012).CrossRefGoogle Scholar
  15. 15.
    H. Nasu, D. Hirota, K. Inoue, T. Hashimoto, and A. Ishihara, “Luminescent properties of amorphous Al2O3 prepared by sol–gel method, J. Ceram. Soc. Jpn. 116, 835–836 (2008).CrossRefGoogle Scholar
  16. 16.
    V. I. Anisimov, V. V. Dremov, M. A. Korotin, G. N. Rykovanov, and.V. V. Ustinov, “First principles electronic structure calculation and simulation of the evolution of radiation defects in plutonium by the density functional theory and the molecular dynamics approach,” Phys. Met. Metallogr. 114, 1087–1122 (2013).CrossRefGoogle Scholar
  17. 17.
    M. A. Korotin, Z. V. Pchelkina, N. S. Skorikov, A. V. Efremov, and V. I. Anisimov, “Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling,” Phys. Met. Metallogr. 117, 655–664 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations