Physics of Metals and Metallography

, Volume 119, Issue 9, pp 817–824 | Cite as

Microstructure and Magnetic Properties of the Gadolinium Nanolayer in a Thermo-Sensitive Spin Valve

  • L. I. Naumova
  • M. A. Milyaev
  • T. P. Krinitsina
  • V. V. Makarov
  • M. V. Ryabukhina
  • T. A. Chernyshova
  • I. K. Maksimova
  • V. V. Proglyado
  • V. V. Ustinov


Spin-valve nanostructures with an exchange-coupled Gd/CoFe pair (synthetic ferrimagnet) as the free layer were prepared by magnetron sputtering. It was shown that when a fixed magnetic field is applied and the temperature near the compensation temperature of the synthetic ferrimagnet is varied, the spin valve switches between magnetic states, which are characterized by maximum and minimum resistance. The dependence of the compensation temperature on the Gd layer thickness is studied, which is interpreted based on the results of investigations of the microstructure of the Gd layer, taking into account peculiarities of its magnetic structure.


spin valve synthetic ferrimagnet microstructure magnetic anisotropy 



This work was performed as part of a state assignment of FASO of the Russian Federation (topic SPIN, no. АААА-А18-118020290104-2) and was supported by the Integrated Program of Ural Branch, Russian Academy of Sciences (project no. 18-10-2-37), the Russian Foundation for Basic Research (project no. 16-02-00061), and the Ministry of Education and Science of the Russian Federation (contract no. 14.Z50.31.0025).

The studies were performed using equipment available at the Collective Usage Testing Center for Nanotechnologies and Advanced Materials at the Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.


  1. 1.
    A. V. Andrlanov, A. N. Vasil’ev, and Yu. P. Gaidukov, “Low temperature magnetic phase diagrams of dysprosium and gadolinium,” Physica B 169, 469–470 (1991).CrossRefGoogle Scholar
  2. 2.
    K. P. Belov, Rare-Earth Magnets and Their Application (Nauka, Moscow, 1980) [in Russian].Google Scholar
  3. 3.
    Yu. Dan’kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, “Magnetic phase transitions and the magnetothermal properties of gadolinium,” Phys. Rev. B. 57, 3478–3490 (1998).CrossRefGoogle Scholar
  4. 4.
    W. C. Koehler, “Magnetic Structures of Rare Earth Metals and Alloys,” in Magnetic Properties of Rare Earth Metals, Ed. by R. J. Elliot (Plenum, London, 1972). pp. 81–128.Google Scholar
  5. 5.
    A. V. Svalov, V. O. Vas’kovskiy, and G. Kurlyandskaya, “Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3d and 4f Metals,” Phys. Met. Metallogr. 118, 1263–1299 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Farle, K. Baberschke, and U. Stette, “Thickness-dependent Curie temperature of Gd(0001)/W(110) and its dependence on the growth conditions,” Phys. Rev. B 47, 11571–11574 (1993).CrossRefGoogle Scholar
  7. 7.
    J. Jiang Samuel and C. L. Chien, “Magnetization and finite-size effects in Gd/W multilayers,” J. Appl. Phys. 79, 5615–5617 (1996).CrossRefGoogle Scholar
  8. 8.
    A. Horiguchi, T. Matsuda, and Y. Watanabe, “Size effect and temperature dependence of spin conduction in Gd/SiN ultrathin film,” J. Appl. Phys. 87, 6603–6605 (2000).CrossRefGoogle Scholar
  9. 9.
    G. Scheunert, W. R. Hendren, C. Ward, and R. M. Bowman, “Magnetization of 2.6T in gadolinium thin films,” App. Phys. Lett. 101, 142407 (2012).CrossRefGoogle Scholar
  10. 10.
    G. Scheunert, C. Ward, W. R. Hendren, A. A. Lapicki, R. Hardeman, M. Mooney, M. A. Gubbins, and R. M. Bowman, “Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys,” J. Phys. D: Appl. Phys. 47, 415005 (2014).CrossRefGoogle Scholar
  11. 11.
    C. Ward, G. Scheunert, W. R. Hendren, R. Hardeman, M. A. Gubbins, and R. M. Bowman, “Realizing a high magnetic moment in Gd/Cr/FeCo: The role of the rare earth,” Appl. Phys. Lett. 102, 092403 (2013).CrossRefGoogle Scholar
  12. 12.
    H. F. Kirby, D. D. Belyea, J. T. Willman, and C. W. Miller, “Effects of preparation conditions on the magnetocaloric properties of Gd thin films,” J. Vac. Sci. Technol., A. 31, 031506 (2013).CrossRefGoogle Scholar
  13. 13.
    A. E. Curzon and H. G. Chlebek, “The observation of face centred cubic Gd, Tb, Dy, Ho, Er and Tm in the form of thin films and their oxidation,” J. Phys. F: Met. Phys. 3, 1–5 (1979).CrossRefGoogle Scholar
  14. 14.
    T. P. Bertelli, E. C. Passamani, C. Larica, V. P. Nascimento, and A. Y. Takeuchi, “Ferromagnetic properties of fcc Gd thin films,” J. Appl. Phys. 117, 203904 (2015).CrossRefGoogle Scholar
  15. 15.
    D. Haskel, G. Srajer, J. C. Lang, J. Pollmann, C. S. Nelson, J. S. Jiang, and S. D. Bader, “Enhanced interfacial magnetic coupling of Gd/Fe multilayers,” Phys. Rev. Lett. 87, 207201 (2001).CrossRefGoogle Scholar
  16. 16.
    S. Vorobiov, Ia. Lytvynenko, T. Hauet, M. Hehn, D. Derecha, and A. Chornous, “The effect of annealing on magnetic properties of Co/Gd multilayers,” Vacuum 120, 9–12 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Milyaev, L. Naumova, T. Chernyshova, V. Proglyado, I. Kamensky, T. Krinitsina, M. Ryabukhina, and V. Ustinov, “Magnetization reversal and inverted magnetoresistance of exchange-biased spin valves with a gadolinium layer,” J. Appl. Phys. 121, 123902 (2017).CrossRefGoogle Scholar
  18. 18.
    A. V. Svalov, G. V. Kurlyandskaya, and V. O. Vas’kovskiy, “Thermo-sensitive spin valve based on layered artificial ferrimagnet,” Appl. Phys. Lett. 108, 063504 (2016).CrossRefGoogle Scholar
  19. 19.
    B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhout, D. Maui, “Giant magnetoresistance in soft ferromagnetic multilayers,” Phys. Rev. B: Condens. Matter . 43, 1297–1300 (1991).CrossRefGoogle Scholar
  20. 20.
    C. Bellouard, H. D. Rapp, B. George, S. Mangin, G. Marchal, and J. C. Ousset, “Negative spin-valve effect in Co65Fe35/Ag/(Co65Fe35)50Gd50 trilayers,” Phys. Rev. B Condens. Matter 53, 5082–5085 (1996).CrossRefGoogle Scholar
  21. 21.
    F. E. Stanley, M. Perez, C. H. Marrows, S. Langringe, B. J. Hickey, “Inverse giant magnetoresistance in rare-earth/transition metal multilayers,” Europhys. Lett. 49, 528 (2000).CrossRefGoogle Scholar
  22. 22.
    M. Romera, M. Munoz, M. Maicas, J. M. Michalik, J. M. de Teresa, C. Magen, and J. L. Prieto, “Enhanced exchange and reduced magnetization of Gd in an Fe/Gd/Fe trilayer,” Phys. Rev. B 84, 094456 (2011).CrossRefGoogle Scholar
  23. 23.
    A. Maesaka, N. Sugawara, A. Okabe, and M. Itabashi, “Influence of microstructure on thermal stability of spin-valve multilayers,” J. Appl. Phys. 83, 7628–7634 (1998).CrossRefGoogle Scholar
  24. 24.
    V. V. Ustinov, M. A. Milyaev, and L. I. Naumova, “Giant magnetoresistance of metallic exchange-coupled multilayers and spin valves,” Phys. Met. Metallogr. 118, 1300–1359 (2017).CrossRefGoogle Scholar
  25. 25.
    P. Zaumseil, “High-resolution characterization of the forbidden Si 200 and Si 222 reflections,” J. Appl. Cryst. 48, 528–532 (2015).CrossRefGoogle Scholar
  26. 26.
    M. V. Ryabukhina, E. A. Kravtsov, L. I. Naumova, V. V. Proglyado, Yu. N. Khaidukov and V. V. Ustinov, “Crystal structure and magnetic properties of Fe/Cr/Gd superlattices,” Phys. Met. Metallogr. 118, 143–149 (2017).CrossRefGoogle Scholar
  27. 27.
    E. Stavrou and K. Roll, “Magnetic anisotropy in Gd/FeCo and Gd/Fe multilayers for high density magneto-optical recording,” J. Appl. Phys. 85, 5971–5973 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. I. Naumova
    • 1
    • 2
  • M. A. Milyaev
    • 1
  • T. P. Krinitsina
    • 1
  • V. V. Makarov
    • 1
  • M. V. Ryabukhina
    • 1
  • T. A. Chernyshova
    • 1
    • 2
  • I. K. Maksimova
    • 1
  • V. V. Proglyado
    • 1
  • V. V. Ustinov
    • 1
    • 2
  1. 1.Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal University, Institute of Natural Sciences and MathematicsEkaterinburgRussia

Personalised recommendations