Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 8, pp 735–740 | Cite as

Scandium-Based Hexagonal-Closed Packed Multi-Component Alloys

  • S. Riva
  • S. G. R. Brown
  • N. P. Lavery
  • K. V. Yusenko
STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • 20 Downloads

Abstract

Since their early development, High-Entropy Alloys have fueled the investigation of exotic metal combinations. Here, we present a strategy for the rational design of a library for multi-component alloys based on six hcp-structured metals. Seven five- and six-component equimolar alloys based on Co, Gd, Y, Sc, Ti and Zr were prepared via induction melting and characterized by PXRD, SEM–EDX and Vickers hardness. They all present ternary hexagonal phases (ScTiZr or GdScY) co-existing with one or more cubic phases and intermetallic compounds. Both ScTiZr and GdScY appear promising as the starting point for new single-phase High-Entropy Alloys families.

Keywords:

high-entropy alloys hexagonal close-packed alloys scandium 

Notes

ACKNOWLEDGMENTS

The authors acknowledge support from the Welsh Government and Higher Education Funding Council for Wales through the Sêr Cymru National Research Network in Advanced Engineering and Materials and by the European Space Agency (contract number 4000111643/NL/PA). KVY is grateful to the EPSRC Impact Acceleration Account for financial support. The authors thank the Materials Advanced Characterisation Centre (MACH1) at Swansea University and the European Synchrotron Radiation Facility (Grenoble, France) for providing measurement time and technical support.

REFERENCES

  1. 1.
    J-W. Yeh, “Overview of High-Entropy Alloys,” in High-Entropy Alloys: Fundamentals and applications, 1st ed., Ed by M. C. Gao, J-W. Yeh, P. K. Liaw, and Y. Zhang, (Springer: Cham (ZG), Switzerland, 2016), Vol. 1, pp. 1–20.Google Scholar
  2. 2.
    M. C. Gao and D. E. Alman, “Searching for next single-phase high-entropy alloy compositions,” Entropy 1, 4504–4519 (2013).CrossRefGoogle Scholar
  3. 3.
    D. B. Miracle and O. N. Senkov, “A critical review of high entropy alloys and related concepts,” Acta Mater. 122, 448–511 (2017).CrossRefGoogle Scholar
  4. 4.
    A. Takeuchi, K. Amiya, T. Wada, K. Yubuta, and W. Zhang, “High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams,” JOM 66, 1984–1992 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Takeuchi, K. Amiya, T. Wada, and K. Yubuta, “Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-elements alloy,” Intermetallics 69, 103–109 (2016).CrossRefGoogle Scholar
  6. 6.
    L. Rogal, F. Czerwinski, P. T. Jochym, and L. Litynska-Dobrzynska, “Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions,” Mater. Des. 92, 8–17 (2016).CrossRefGoogle Scholar
  7. 7.
    C-H. Tsau, “Phase transformation and mechanical behaviour of TiFeCoNi alloy during annealing,” Mater. Sci. Eng., A 501, 81–86 (2009).CrossRefGoogle Scholar
  8. 8.
    K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving, and C. C. Koch, “A novel low density, high hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures,” Mater. Res. Lett. 3, 95–99 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Feuerbacher, M. Heidelmann, and C. Thomas, “Hexagonal high-entropy alloys,” Mater. Res. Lett. 3, 1–6 (2015).CrossRefGoogle Scholar
  10. 10.
    J. O. A. Paschoal, H. Kleykamp, and F. Thummler, “Phase equilibria in the quaternary molybdenum–ruthenium–rhodium–palladium system,” Z. Metallkd 74, 652 (1983).Google Scholar
  11. 11.
    M. Hellenbrandt, “The inorganic crystal structure database (ICSD) — Present and future,” Crystallogr. Rev. 10, 17–22 (2004).CrossRefGoogle Scholar
  12. 12.
    S. Riva, K. V. Yusenko, N. P. Lavery, D. J. Jarvis, and S. G. R. Brown, “The scandium effect in multicomponent alloys,” Int. Mater. Rev. 61, 1–26 (2016).CrossRefGoogle Scholar
  13. 13.
    S. Riva, C. M. Fung, J. R. Searle, R. N. Clark, N. P. Lavery, S. G. R. Brown, and K. V. Yusenko, “Formation and disruption of W-phase in high-entropy alloys,” Metals 6, 1–8 (2016). doi 10.3390/met6050196CrossRefGoogle Scholar
  14. 14.
    G. V. Samsonov, Handbook of the physicochemical properties of the elements, 1st ed. (IFI/Plenum, New York–Washington, USA, 1968).Google Scholar
  15. 15.
    I. Toda-Caraballo and P. E. J. Rivera-Dìaz—del-Castillo, “Modelling and design of magnesium and high-entropy alloys through combining statistical and physical models,” JOM 67, 108–117 (2015).CrossRefGoogle Scholar
  16. 16.
    I. Toda-Caraballo and P. E. J. Rivera-Dìaz—del-Castillo, “Modelling solid solution hardening in high-entropy alloys,” Acta Mater. 85, 14–23 (2015).CrossRefGoogle Scholar
  17. 17.
    N. Mattern, M. Zinkevich, J. H. Han, and W. Löser, “Experimental and thermodynamic assessment of the Co–Gd–Ti system,” CALPHAD 54, 144–157 (2016).CrossRefGoogle Scholar
  18. 18.
    U. Dahlborg, J. Cornide, M. Calvo-Dahlborg, T. C. Hansen, A. Fitch, Z. Leong, S. Chambreland, and R. Goodall, “Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques,” J. Alloys Compd. 681, 330–341 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Riva
    • 1
  • S. G. R. Brown
    • 1
  • N. P. Lavery
    • 1
  • K. V. Yusenko
    • 1
  1. 1.College of Engineering, Swansea University, Bay Campus, Swansea SA1 8QQWalesUK

Personalised recommendations