Advertisement

Physics of Metals and Metallography

, Volume 119, Issue 8, pp 802–809 | Cite as

Mechanisms of Cold Deformation under High Pressure of Superconductive MgB2 Ceramics

  • E. I. Kuznetsova
  • T. P. Krinitsina
  • S. V. Sudareva
  • Yu. V. Blinova
  • M. V. Degtyarev
  • Yu. N. Akshentsev
STRENGTH AND PLASTICITY
  • 23 Downloads

Abstract

Structures of the massive MgB2 samples deformed in Bridgman anvils that were initially in different structural states, namely, as-synthesized and post-four-stage-treated (via deformation + annealing), have been studied by methods of the X-ray diffraction, scanning and transmission electron microscopy, and measurements of microhardness. The process of the deformation of brittle ceramic samples of MgB2 under high pressure has been discussed. An analysis of the obtained data has shown that the plastic deformation of the superconductor MgB2 preliminarily compacted by a four-stage treatment has been implemented in the main through the mutual rotation of crystallites (grains) and by grain-boundary sliding without a noticeable refinement of the grain structure.

Keywords:

magnesium diboride deformation annealing 

Notes

ACKNOWLEDGMENTS

The studies were performed using equipment of the Center of Collaborative Access “Test Center of Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Branch, Russian Academy of Sciences.The work was performed under the state task according to the theme “Pressure,” АААА-А18-118020190104-3, as well as under the project of the Ural Branch, Russian Academy of Sciences, no. 18-10-2-24.

REFERENCES

  1. 1.
    Mechanical Behaviour of Materials under Pressure, Ed. by H. Pugh (Van Nostrand, Amsterdam, 1970; Mir, Moscow, 1973).Google Scholar
  2. 2.
    G. S. Oleinik, “Structural mechanisms of plastic deformation of ceramic materials,” in Elektron. Mikrosk. Prochn. Mater., Ser.: Fizich. Materialoved., Strukt. Svoistva Mater., No. 20, 3–30 (2014).Google Scholar
  3. 3.
    P. B. Day and R. J. Stokes, “Mechanical behavior of magnesium oxide at high temperatures,” J. Amer. Ceram. Soc. 47, 493–503 (1964).CrossRefGoogle Scholar
  4. 4.
    G. V. Berezhkova, P. P. Perstnev, and A. E. Romanov, “Effect of preliminary deformation at high temperature on the plastic properties of magnesium oxide crystals,” Dokl. Akad. Nauk SSSR 248, 1105–1108 (1979).Google Scholar
  5. 5.
    A. V. Leont’eva, V. A. Strel’tsov, and E. P. Fel’dman, “Brittle–plastic transition in crystals under hydrostatic pressure,” Fiz. Tekh. Vys. Davlenii, No. 22, 16–30 (1986).Google Scholar
  6. 6.
    G. S. Oleinik, V. M. Volkogon, S. K. Avramchuk, A. V. Kotko, and V. M. Vereshchaka, “The role of plastic deformation in compaction and decompaction processes upon the sintering of materials based on wurtzite modificatiopn of boron nitride,” Sverkhtverd. Mater., No. 5, 51–60 (2010).Google Scholar
  7. 7.
    J. Rabier, “Plastic deformation and dislocations in ceramic materials,” Radiat. Eff. Defects Solids 137, 205–212 (1995).CrossRefGoogle Scholar
  8. 8.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].Google Scholar
  9. 9.
    C. B. Carter and M. G. Norton, Ceramic Materials: Science and Engineering (Springer, New York, 2013). doi 10.1007/978-1-4614-3523-5CrossRefGoogle Scholar
  10. 10.
    J. D. DeFouw and D. C. Dunand, “Superplastic compressive flow in MgB2,” Acta Mater. 57, 4745–4750 (2009).CrossRefGoogle Scholar
  11. 11.
    A. Gumbel, J. Eckert, G. Fuchs, K. Nenkov, K. H. Muller, and L. Schultz, “Improved superconducting properties in nanocrystalline bulk MgB2,” Appl. Phys. Lett. 80, 2725–2727 (2002).CrossRefGoogle Scholar
  12. 12.
    C. U. Jung, M. S. Park, W. N. Kang, M. S. Kim, K. H. P. Kim, S. Y. Lee, and S. I. Lee, “Effect of sintering temperature under high pressure on the superconductivity of MgB2,” Appl. Phys. Lett. 78, 4157–4159 (2001).CrossRefGoogle Scholar
  13. 13.
    Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Togano, H. Kito, and H. Ihara, “Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering,” Appl. Phys. Lett. 78, 2914–2916 (2001).CrossRefGoogle Scholar
  14. 14.
    E. I. Kuznetsova, Yu. N. Akshentsev, V. O. Esin, S. V. Sudareva, Yu. V. Blinova, M. V. Degtyarev, V. I. Novozhonov, and E. P. Romanov, “Mechanisms of the formation of a bulk superconducting phase MgB2 at high temperatures,” Phys. Solid State 57, 873–879 (2015).CrossRefGoogle Scholar
  15. 15.
    E. I. Kuznetsova, T. P. Krinitsina, Yu. V. Blinova, M. V. Degtyarev, and S. V. Sudareva, “Fine structure of a bulk MgB2 superconductor after deformation and heat treatment,” Phys. Met. Metallogr. 118, 346–353 (2017).CrossRefGoogle Scholar
  16. 16.
    X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, F. M. Mueller, and H. F. Xu, “Mg(B,O)2 precipitation in MgB2,” J. Appl. Phys. 93, 6208–6215 (2003).CrossRefGoogle Scholar
  17. 17.
    E. I. Kuznetsova, M. V. Degtyarev, Yu. V. Blinova, S. V. Sudareva, Yu. N. Akshentsev, and V. P. Pilyugin, “Mechanism of the formation of structure during high-temperature annealing of MgB2 bulk samples deformed under pressure,” Phys. Solid State 59, 1695–1701 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. I. Kuznetsova
    • 1
  • T. P. Krinitsina
    • 1
  • S. V. Sudareva
    • 1
  • Yu. V. Blinova
    • 1
  • M. V. Degtyarev
    • 1
  • Yu. N. Akshentsev
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations