Physics of Metals and Metallography

, Volume 119, Issue 8, pp 707–712 | Cite as

Electronic Structure of Aluminum Oxide with Oxygen Vacancies

  • M. A. KorotinEmail author
  • E. Z. Kurmaev


Results of numerical calculations of the electronic structure of nonstoichiometric aluminum oxide with a concentration of oxygen vacancies of 6% have been presented. The calculations have been performed within the scope of the density-functional theory of the coherent-potential approximation with a disordered location of vacancies. It has been established that the presence of oxygen vacancies leads to the appearance of a peak in the density of states inside the energy gap and additional electronic states at the bottom of the conduction band, which gives a decrease in the energy gap to 2 eV. The simulation of the aluminum oxide of composition Al2[O0.98]3\({\text{O}}_{{{\text{0}}{\text{.06}}}}^{{{\text{int}}\,{\text{erstitial}}}}\) with vacancies in the oxygen sublattice and oxygen atoms in interstices leads to a semiconducting character of the energy spectrum with a band gap of ~1 eV, which is formed between the p states of the impurity interstitial oxygen atoms and the s states of the vacancies.


aluminum oxide electronic structure method of coherent potential 



This work was performed within the scope of the state task of FASO of Russia (theme “Electron,” no. АААА-А18-118020190098-5).


  1. 1.
    G. Ma, W. Hu, H. Pei, L. Jiang, Y. Ji, and R. Mu, “Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae,” Environ. Technol. 36, 622–627 (2015).CrossRefGoogle Scholar
  2. 2.
    D. Liu, S. J. Clark, and J. Robertson, “Oxygen vacancy levels and electron transport in Al2O3,” Appl. Phys. Lett. 96, 032905 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Andersson, P. A. Brühwiler, A. Sandell, M. Frank, J. Libuda, A. Giertz, B. Brena, A. J. Maxwell, M. Bäumer, H.-J. Freund, and N. Martensson, “Metal-oxide interaction for metal clusters on a metal-supported thin alumina film,” Surf. Sci. 442, L964–L970 (1999).CrossRefGoogle Scholar
  4. 4.
    J. Wilt, Y. Gong, M. Gong, F. Su, H. Xu, R. Sakidja, A. Elliot, R. Lu, S. Zhao, S. Han, and J. Z. Wu, Atomically thin Al2O3 films for tunnel junctions, Phys. Rev. Appl. 7, 064022 (2017).CrossRefGoogle Scholar
  5. 5.
    L. Wachnicki, B. S. Witkowski, M. Godlewski, and E. Guziewicz, “Properties of thin films of high-k oxides grown by atomic layer deposition at low temperature for electronic applications,” Opt. Appl. 43, 17–25 (2013).Google Scholar
  6. 6.
    X. Guo, Z. Zhu, M. Ekevad, X. Bao, and P. Cao, “The cutting performance of Al2O3 and Si3N4 ceramic cutting tools in the milling plywood,” Adv. Appl. Ceram. 117, 16–22 (2018).CrossRefGoogle Scholar
  7. 7.
    J. Zhang, J. Hey, Y. Dong, X. Li, and Y. Dianran, “Microstructure and properties of Al2O3–13% TiO2 coatings sprayed using nanostructured powders,” Rare Met. 26, 391–397 (2007).CrossRefGoogle Scholar
  8. 8.
    J. Carrasco, J. R. B. Gomes, and F. Illas, “Theoretical study of bulk and surface oxygen and aluminum vacancies in α-Al2O3,” Phys. Rev. B. 69, 064116 (2004).CrossRefGoogle Scholar
  9. 9.
    M. Yazdanmehr, S. J. Asadabadi, A. Nourmohammadi, M. Ghasemzadeh, and M. Rezvanian, “Electronic structure and bandgap of γ-Al2O3 compound using mBJ exchange potential,” Nanoscale Res. Lett. 7, 488–497 (2012).CrossRefGoogle Scholar
  10. 10.
    N. D. M. Hine, K. Frensch, W. M. C. Foulkes, and M. W. Finnis, “Supercell size scaling of density functional theory formation energies of charged defects,” Phys. Rev. B. 79, 024112 (2009).CrossRefGoogle Scholar
  11. 11.
    P. Soven, “Application of coherent potential approximation to a system of muffin-tin potential,” Phys. Rev. B. 2, 4715–4722 (1970).CrossRefGoogle Scholar
  12. 12.
    H. d’Amour, D. Schiferl, W. Denner, H. Schulz, and W. B. Holzapfel, “High-pressure single-crystal structure determinations for ruby up to 90 kbar using an automatic diffractometer,” J. Appl. Phys. 49, 4411–4416 (1978).CrossRefGoogle Scholar
  13. 13.
    J. L. Lauer, J. L. Shohet, C. Cismaru, R. W. Hansen, M. Y. Foo, and T. J. Henn, “Photoemission and conduction currents in vacuum ultraviolet irradiated aluminum oxide,” J. Appl. Phys. 91, 1242–1246 (2002).CrossRefGoogle Scholar
  14. 14.
    O. K. Andersen and O. Jepsen, “Explicit, first-principles tight-binding theory,” Phys. Rev. Lett. 53, 2571–2574 (1984).CrossRefGoogle Scholar
  15. 15.
    E. O. Filatova and A. S. Konashuk, “Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: Connection with different local symmetries,” J. Phys. Chem. C 119, 20755–20761 (2015).CrossRefGoogle Scholar
  16. 16.
    M. A. Korotin, N. A. Skorikov, and A. O. Anokhin, “Electronic structure and magnetic properties of low-dimensional nonstoichiometric rutile,” Phys. B. 526, 14–20 (2017).CrossRefGoogle Scholar
  17. 17.
    M. A. Korotin, Z. V. Pchelkina, N. A. Skorikov, A. V. Efremov, and V. I. Anisimov, “Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin–orbit coupling,“ Phys. Met. Metallogr. 117, 655–664 (2016).CrossRefGoogle Scholar
  18. 18.
    S. Nigo, M. Kubota, Y. Harada, T. Hirayama, S. Kato, H. Kitazawa, and G. Kido, “Conduction band caused by oxygen vacancies in aluminum oxide,” J. Appl. Phys. 112, 033711 (2012).CrossRefGoogle Scholar
  19. 19.
    H. Nasu, D. Hirota, K. Inoue, T. Hashimoto, and A. Ishihara, “Luminescent properties of amorphous Al2O3 prepared by sol–gel method,” J. Ceram. Soc. Jpn. 116, 835–836 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations