Advertisement

Physics of Metals and Metallography

, Volume 118, Issue 4, pp 346–353 | Cite as

Fine structure of a bulk MgB2 superconductor after deformation and heat treatment

  • E. I. Kuznetsova
  • T. P. Krinitsina
  • Yu. V. Blinova
  • M. V. Degtyarev
  • S. V. Sudareva
Electrical and Magnetic Properties

Abstract

The structure of the MgB2 superconductor subjected to high-temperature restoration annealing after cold deformation under high pressure in a Toroid chamber or Bridgman anvils has been investigated by transmission electron microscopy. It has been shown that after postdeformation annealing at 950°C the average size of crystallites in the matrix phase increases 5–10 times compared to the deformed state, reaching ~50–150 nm, as well as the critical current density increases by a factor of three (up to 6.7 × 104 A/cm2, 30 K) compared to the initial state. It has been found that the MgO phase and the higher magnesium borides are present in the form of dispersed precipitates 10–70 nm in size.

Keywords

magnesium diboride deformation annealing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Buzea and T. Yamashita, “Review of the superconducting properties of MgB2,” Supercond. Sci. Technol. 14, R115–R176 (2001).CrossRefGoogle Scholar
  2. 2.
    T. A. Prikhna, A. P. Shapovalov, A. V. Kozyrev, V. E. Moshchil, V. B. Sverdun, M. A. Belogolovskiy, G. E. Grechnev, V. G. Boutko, and A. A. Gusev, “Formation of nanostructure in magnesium diboride based materials with high superconducting characteristics,” Low Temp. Phys. 42, 380–394 (2016).CrossRefGoogle Scholar
  3. 3.
    Y. N. Akshentsev, M. V. Degtyarev, V. P. Pilyugin, T. P. Krinitsina, E. I. Kuznetsova, Y. V. Blinova, S. V. Sudareva, and E. P. Romanov, “Effect of deformation with Bridgman anvils on the structure, hardness, and critical current of a massive MgB2-based sample,” Phys. Met. Metallogr. 116, 475–481 (2015).CrossRefGoogle Scholar
  4. 4.
    G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, A. S. Siri, and M. R. Cimberle, “Large transport critical currents in unsintered MgB2 superconducting tapes,” Appl. Phys. Lett. 79, 230–232 (2001).CrossRefGoogle Scholar
  5. 5.
    I. F. Kislyak, M. A. Tikhonovsky, D. G. Malykhin, T. Yu. Rudycheva, V. G. Yarovoy, A. A. Blinkin, V. V. Derevyanko, S. Yu. Sayenko, G. A. Kholomeyev, A. G. Sivakov, A. S. Pokhila, and O. G. Turutanov, “Investigations of superconductivity in MgB2 bulk and Fe(steel)/MgB2 wires,” Vopr. At. Nauki Techn. Sverkhpr. Sverkhpr. Mater., No. 6, 107–110 (2009).Google Scholar
  6. 6.
    A. Athanasiou-Ioannou and I. D. Theodorakopoulos, “Improving the characteristics of powder-in-tube MgB2 superconductor fabricated using the extrusion technique,” J. Supercond. Nov. Magn. 27, 1041–1047 (2014).CrossRefGoogle Scholar
  7. 7.
    J. H. Durrell, C. E. J. Dancer, A. Dennis, Y. Shi, Z. Xu, A. M. Campbell, N. H. Babu, R. I. Todd, C. R. M. Grovenor, and D. A. Cardwell, “A trapped field of >3T in bulk MgB2 fabricated by uniaxial hot pressing,” Supercond. Sci. Technol. 25, 112002 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Kulich, R. L. Flukiger, C. Senatore, M. Tropeano, and R. Piccardo, “Effect of cold high pressure deformation on the properties of ex situ MgB2 wires,” Supercond. Sci. Technol. 26, 105019 (2013).CrossRefGoogle Scholar
  9. 9.
    A. Bateni, S. Repp, R. Thomann, S. Acar, E. Erdem, and M. Somer, “Defect structure of ultrafine MgB2 nanoparticles,” Appl. Phys. Lett. 105, 202605 (2014).CrossRefGoogle Scholar
  10. 10.
    T. A. Prikhna, M. Eisterer, H. W. Weber, W. Gawalek, V. V. Kovylaev, M. V. Karpets, T. V. Bayuk, and V. E. Moshchil, “Nanosturctural inhomogeneities acting as pinning centers in bulk MgB2 with low and enhanced grain connectivity,” Supercond. Sci. Technol. 27, 044013 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Zhu, Y. B. Zhang, X. L. Niu, C. C. Lu, H. M. Zhu, and C. B. Cai, “Improvement of current-carrying capacity and in situ control of the superconducting fraction of MgB2–MgO composites,” J. Supercond. Nov. Magn. 27, 2205–2209 (2014).CrossRefGoogle Scholar
  12. 12.
    T. A. Prikhna, W. Gawalek, Ya. M. Savchuk, T. Habisreuther, M. Wendt, N. V. Sergienko, V. E. Moshchil, P. Nagorny, Ch. Schmidt, J. Dellith, U. Dittrich, D. Litzkendorf, V. S. Melnikov, and V. B. Sverdun, “The inclusions of Mg–B (MgB2) as potential pinning centers in high-pressure–high-temperature-synthesized or sintered magnesium diboride,” Supercond. Sci. Technol. 20, S257–S264 (2007).CrossRefGoogle Scholar
  13. 13.
    Y. V. Blinova, S. V. Sudareva, T. P. Krinitsina, M. V. Degtyarev, O. V. Snigirev, and N. V. Porokhov, “Structure and properties of deposited films in composite samples SiO2/YSZ/CeO2/YBa2Cu3Oy,” Phys. Solid State 58, 1513–1520 (2016).CrossRefGoogle Scholar
  14. 14.
    M. V. Degtyarev, V. P. Pilyugin, Y. N. Akshentsev, E. I. Kuznetsova, T. P. Krinitsina, Y. V. Blinova, S. V. Sudareva, and E. P. Romanov, “Influence of high-pressure deformation and annealing on the structure and properties of a bulk MgB2 superconductor,” Phys. Met. Metallogr. 117, 772–782 (2016).CrossRefGoogle Scholar
  15. 15.
    X. Z. Liao, A. Serquis, Y. T. Zhu, J. Y. Huang, L. Civale, D. E. Peterson, D. M. Mueller, and H. F. Xu, “Mg(B,O)2 precipitation in MgB2,” J. Appl. Phys. 93, 6208–6215 (2003).CrossRefGoogle Scholar
  16. 16.
    T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, S. V. Sudareva, M. V. Degtyarev, E. P. Romanov, D. N. Rakov, and Yu. N. Belotelova, “Structure and stability of superconducting core of single-core MgB2/Cu,Nb tube composite with a high critical current,” Phys. Met. Metallogr. 115, 538–546 (2014).CrossRefGoogle Scholar
  17. 17.
    D. K. Singh, B. Tiwari, R. Jha, H. Kishan, and V. O. S. Awana, “Role of MgO impurity on the superconducting properties of MgB2,” Physica C 505, 104–108 (2014).CrossRefGoogle Scholar
  18. 18.
    T. Wenzel, K. G. Nickel, J. Glaser, H. J. Meyer, D. Eyidi, and O. Eibl, “Electron probe microanalysis of Mg–B compounds: Stoichiometry and heterogeneity of superconductors,” Phys. Stat. Sol. (a) 198, 374–386 (2003).CrossRefGoogle Scholar
  19. 19.
    D. Eyidi, O. Eibl, T. Wenzel, K. G. Nickel, S. I. Schlachter, and W. Goldacker, “Superconducting properties, microstructure and chemical composition of MgB2 sheathed materials,” Supercond. Sci. Technol. 16, 778–788 (2003).CrossRefGoogle Scholar
  20. 20.
    J. V. Marzik, R. C. Lewis, M. R. Nickles, D. K. Finnemore, J. Yue, M. Tomsic, M. Rindfleisch, and M. D. Sumption, “Plasma synthesized boron nanosized powder for MgB2 wires,” AIP Conf. Proc. 1219, 295–301 (2010).CrossRefGoogle Scholar
  21. 21.
    A. Bateni, S. Repp, R. Thomann, S. Acar, E. Erdem, and M. Somer, “Defect structure of ultrafine MgB2 nanoparticles,” Appl. Phys. Lett. 105, 202605 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. I. Kuznetsova
    • 1
  • T. P. Krinitsina
    • 1
  • Yu. V. Blinova
    • 1
  • M. V. Degtyarev
    • 1
  • S. V. Sudareva
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations