Physics of Metals and Metallography

, Volume 118, Issue 3, pp 256–263 | Cite as

Evolution of the nickel structure during deformation by shear under high pressure at 150°C

  • M. V. Degtyarev
  • L. M. Voronova
  • T. I. Chashchukhina
  • V. P. Pilyugin
  • N. N. Resnina
Structure, Phase Transformations, and Diffusion


Initial single-crystal nickel deformed by shear under pressure at the temperature of 150°C has been studied. It has been found that, under these conditions, dynamic recrystallization develops in nickel. As a result, after true strain in the range of 4 < е < 9, a heterogeneous structure that consist of recrystallized grains of different defectiveness and microcrystallites is formed. Calorimetric studies have shown that the stored energy varies nonmonotonically with increasing true strain, which is associated with the cyclic character of dynamic recrystallization. In the calorimetric dependence, several peaks of heat release have been revealed that are connected with the nonsimultaneous occurrence of static recrystallization upon heating in nickel with a heterogeneous structure formed upon dynamic recrystallization.


nickel large plastic deformation dynamic recrystallization calorimetry stored energy of deformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, and M. V. Degtyarev, “The low temperature recrystallization of nickel and copper,” Phys. Met. Metallogr. 62, 140–144 (1986).Google Scholar
  2. 2.
    M. L. Bernshtein, Structure of Deformed Metals (Metallurgiya, Moscow, 1977) (in Russian).Google Scholar
  3. 3.
    S. S. Gorelik, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys (MISIS, Moscow, 2005) (in Russian).Google Scholar
  4. 4.
    T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev, and D. K. Pokryshkina, “Deformation and dynamic recrystallization in copper at different deformation rates in Bridgman anvils,” Phys. Met. Metallogr. 111, 304–313 (2011).CrossRefGoogle Scholar
  5. 5.
    V. I. Levit and M. A. Smirnov, High-Temperature Thermomechanical Treatment of Austenitic Steels and Alloys (ChGTU, Chelyabinsk, 1995) (in Russian).Google Scholar
  6. 6.
    M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation,” Acta Mater. 55, 6039–6050 (2007).CrossRefGoogle Scholar
  7. 7.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRefGoogle Scholar
  8. 8.
    A. M. Glezer, “On the nature of ultrahigh plastic (megaplastic) strain,” Bull. Russ. Acad. Sci.: Phys. 71, 1722–1730 (2007).CrossRefGoogle Scholar
  9. 9.
    V. V. Rybin, N. Yu. Zolotorevskii, and E. A. Ushanova, “Fragmentation of crystals upon deformation twinning and dynamic recrystallization,” Phys. Met. Metallogr. 116, 730–744 (2015).CrossRefGoogle Scholar
  10. 10.
    Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, 79–86 (2015).CrossRefGoogle Scholar
  11. 11.
    V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–419 (2008).CrossRefGoogle Scholar
  12. 12.
    V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, and V. P. Pilyugin, “Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 115, 682–691 (2014).CrossRefGoogle Scholar
  13. 13.
    Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrysrallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, 267–274 (2016).CrossRefGoogle Scholar
  14. 14.
    S. S. Gorelik, Recrystallization of Metals and Alloys (Moscow: Metallurgiya, 1978).Google Scholar
  15. 15.
    A. P. Zhilyaev, G. V. Nurislamova, M. D. Baro, R. Z. Valiev, and T. G. Langdon, “Thermal stability and microstructural evolution in ultrafine-grained nickel after equal-channel angular pressing (ECAP),” Metall. Mater. Trans. A 33, 1865–1868 (2002).CrossRefGoogle Scholar
  16. 16.
    M. C. Iordache, S. H. Whang, Z. Jiao, and Z. M. Wang, “Grain growth kinetics in nanostructured nickel,” Nanostruct. Mater. 11, 1343–1349 (1999).CrossRefGoogle Scholar
  17. 17.
    A. P. Zhilyaev, G. V. Nurislamova, S. Surinach, M. D. Baro, and T. G. Langdon, “Calorimetric measurements of grain growth in ultrafine-grained nickel,” Mater. Phys. Mech. 5, 23–30 (2002).Google Scholar
  18. 18.
    H. J. Qeen, “The production and utility of recovered dislocation substructures,” Metall. Trans. A 8, 807–822 (1977).CrossRefGoogle Scholar
  19. 19.
    L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, Yu. G. Krasnoperova, and N. N. Resnina, “Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing,” Mater. Sci. Eng. A 639, 155–164 (2015).CrossRefGoogle Scholar
  20. 20.
    Recrystallization of Metallic Materials, Ed. by F. Khessner (Metallurgiya, Moscow, 1982).Google Scholar
  21. 21.
    V. I. Levit, N. A. Smirnova, and L. S. Davydova, “Twinning and grain refinement upon dynamical recrystallization of nickel aalloys,” Phys. Met. Metallogr. 68, 335–341(1989).Google Scholar
  22. 22.
    T. Knudsen, W. Q. Cao, A. Godfrey, Q. Liu, and N. Hansen, “Stored energy in nickel cold rolled to large strains, measured by calorimetry and evaluated from the microstructure,” Metal. Mater. Trans. A 39, 430–440 (2008).CrossRefGoogle Scholar
  23. 23.
    H. Chang and I. Baker, “Effects of degree of deformation and deformation temperature on primary recrystallization textures in polycrystalline nickel,” Metal. Mater. Trans. A 38, 2815–2824 (2007).CrossRefGoogle Scholar
  24. 24.
    M. V. Degtyarev, T. I. Chashchukhina, and L. M. Voronova, “Hardness of iron and structural steels as functions of the parameters of ultradisperse structure,” Phys. Met. Metallogr. 98, 533–544 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. V. Degtyarev
    • 1
  • L. M. Voronova
    • 1
  • T. I. Chashchukhina
    • 1
  • V. P. Pilyugin
    • 1
  • N. N. Resnina
    • 2
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Saint Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations