Physics of Metals and Metallography

, Volume 117, Issue 13, pp 1328–1383 | Cite as

Magnetism of metals in the dynamic spin-fluctuation theory

Electrical and Magnetic Properties

Abstract

We overview new developments in spin-fluctuation theory, which describes magnetic properties of ferromagnetic metals at finite temperatures. We present a detailed analysis of the underlying techniques and compare numerical results with experiment.

Keywords

dynamic susceptibility spin-density correlations magnetic properties ferromagnetic metals and alloys 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Bozorth, Ferromagnetism (D. van Nostrand, New York, 1951; Inostrannaya Literature, 1956, Moscow).Google Scholar
  2. 2.
    S. V. Tyablikov, Methods in the Quantum Theory of Magnetism (Nauka, Moscow, 1965; Springer, NewYork, 1967).CrossRefGoogle Scholar
  3. 3.
    S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).Google Scholar
  4. 4.
    S. Chikazumi, Physics of Ferromagnetism (Syokabo, Tokyo, 1980; Mir, Moscow, 1983; Clarendon, Oxford, 1997 (2nd ed.)).Google Scholar
  5. 5.
    D. Kim, New Perspectives in Magnetism of Metals (Kluwer Academic/Plenum, New York, 1999).CrossRefGoogle Scholar
  6. 6.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2005), 8th ed.Google Scholar
  7. 7.
    R. White, Quantum Theory of Magnetism (Wiley, New York, 1976; Nauka, Moscow, 1978; Springer, Berlin, 2007 (3rd ed.)).CrossRefGoogle Scholar
  8. 8.
    C. Slichter, Principles of Magnetic Resonance (Springer, New York, 1980; Mir, Moscow, 1981; Springer, Berlin, 1990), 3rd ed.CrossRefGoogle Scholar
  9. 9.
    A. Gurevich and G. Melkov, Magnetization Oscillations and Waves (Nauka, Moscow, 1994; CRC, Boca Raton, 1996).Google Scholar
  10. 10.
    N. B. Melnikov and B. I. Reser, “Magnetic susceptibility and the T3/2 law in the dynamic spin-fluctuation theory,” Theor. Math. Phys. 181, 1435–1447 (2014).CrossRefGoogle Scholar
  11. 11.
    Y. Kakehashi, Modern Theory of Magnetism in Metals and Alloys (Springer, Berlin, 2012).Google Scholar
  12. 12.
    N. B. Melnikov and B. I. Reser, “Optimal Gaussian approximation in the fluctuating field theory,” Proc. Steklov Inst. Math. 271, 149–170 (2010).CrossRefGoogle Scholar
  13. 13.
    S. Raimes, The Wave Mechanics of Electrons in Metals (North-Holland, Amsterdam, 1970).Google Scholar
  14. 14.
    T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985; Mir, Moscow, 1988).Google Scholar
  15. 15.
    J. Kübler, Theory of Itinerant Electron Magnetism (Oxford Univ., Oxford, 2009), 2nd ed.Google Scholar
  16. 16.
    Y. Takahashi, Spin Fluctuation Theory of Itinerant Electron Magnetism (Springer, Berlin, 2013).CrossRefGoogle Scholar
  17. 17.
    R. Stratonovich, “On a method of calculating quantum distribution functions,” Sov. Phys. Dokl., 2, 416–419 (1958).Google Scholar
  18. 18.
    J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett., 3, 77–78 (1959).CrossRefGoogle Scholar
  19. 19.
    J. Hubbard, “The magnetism of iron,” Phys. Rev. B: Condens. Matter 19, 2626–2636 (1979)CrossRefGoogle Scholar
  20. 19a.
    J. Hubbard, “Magnetism of iron. II,” Phys. Rev. B: Condens. Matter 20, 4584–4595 (1979).CrossRefGoogle Scholar
  21. 20.
    H. Hasegawa, “Single-site functional-integral approach to itinerant-electron ferromagnetism,” J. Phys. Soc. Jpn. 46, 1504–1514 (1979).CrossRefGoogle Scholar
  22. 21.
    H. Hasegawa, “Single-site spin fluctuation theory of itinerant electrons systems with narrow bands,” J. Phys. Soc. Jpn. 49, 178–188 (1980)CrossRefGoogle Scholar
  23. 21a.
    H. Hasegawa, “Single-site spin fluctuation theory of itinerant electrons systems with narrow bands. II,” J. Phys. Soc. Jpn. 49, 963–971 (1980).CrossRefGoogle Scholar
  24. 22.
    V. I. Grebennikov, Y. Prokopjev, O. Sokolov, and E. Turov, “Method of local fluctuations in the theory of magnetism of transition metals,” Phys. Met. Metallogr. 52, 1–14 (1981).Google Scholar
  25. 23.
    B. Gyorffy, A. Pindor, J. Staunton, G. Stocks, and H. Winter, “A first-principles theory of ferromagnetic phase transitions in metals,” J. Phys. F: Met. Phys. 15, 1337–1386 (1985)CrossRefGoogle Scholar
  26. 23a.
    J. Staunton, B. Gyorffy, A. Pindor, G. Stocks, and H. Winter, “Electronic structure of metallic ferromagnets above the Curie temperature,” J. Phys. F: Met. Phys. 15, 1387–1404 (1985)CrossRefGoogle Scholar
  27. 23b.
    J. Staunton, B. Gyorffy, G. Stocks, and J. Wadsworth, “The static, paramagnetic, spin susceptibility of metals at finite temperatures,” J. Phys. F: Met. Phys. 16, 1761–1788 (1986).CrossRefGoogle Scholar
  28. 24.
    Y. Kakehashi, “Dynamical coherent-potential approximation to the magnetism in a correlated electron system,” Phys. Rev. B: Condens. Matter 65, 184420 (2002).CrossRefGoogle Scholar
  29. 25.
    G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet, and C. Marianetti, “Electronic structure calculations with dynamical mean-field theory,” Rev. Mod. Phys. 78, 865–951 (2006).CrossRefGoogle Scholar
  30. 26.
    J. A. Hertz and M. A. Klenin, “Fluctuations in itinerant-electron paramagnets,” Phys. Rev. B: Solid State 10, 1084–1096 (1974)CrossRefGoogle Scholar
  31. 26a.
    J. A. Hertz and M. A. Klenin, “Sloppy spin waves above TC,” Physica B and C 91, 49–55 (1977).CrossRefGoogle Scholar
  32. 27.
    V. I. Grebennikov, “Spin density correlations in paramagnetic iron,” J. Magn. Magn. Mater. 84, 59–68 (1990).CrossRefGoogle Scholar
  33. 28.
    B. I. Reser and V. I. Grebennikov, “Calculation of the density of states and magnetization of ferromagnetic metals with account taken of local spin fluctuations,” Phys. Met. Metallogr. 83, 127–133 (1997).Google Scholar
  34. 29.
    B. I. Reser and V. I. Grebennikov, “Effect of dynamic nonlocal spin fluctuations on the temperature dependence of magnetic properties of ferromagnetic metals,” Phys. Met. Metallogr. 85, 20–27 (1998).Google Scholar
  35. 30.
    V. I. Grebennikov, “The dynamic theory of thermal spin fluctuations in magnets,” Phys. Solid State 40, 79–86 (1998).CrossRefGoogle Scholar
  36. 31.
    A. Lichtenstein, M. Katsnelson, and G. Kotliar, “Finite temperature magnetism of transition metals: An ab initio dynamical mean-field theory,” Phys. Rev. Lett. 87, 067205 (2001).CrossRefGoogle Scholar
  37. 32.
    A. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, “Temperature-induced longitudinal spin fluctuations in Fe and Ni,” Phys. Rev. B: Condens. Matter 75, 054402 (2007).CrossRefGoogle Scholar
  38. 33.
    P.-W. Ma and S. Dudarev, “Longitudinal magnetic fluctuations in Langevin spin dynamics,” Phys. Rev. B: Condens. Matter 86, 054416 (2012).CrossRefGoogle Scholar
  39. 34.
    V. I. Grebennikov and S. A. Gudin, “Effects of dynamic spin fluctuations in iron, cobalt, and nickel,” Phys. Met. Metallogr. 85, 258–267 (1998).Google Scholar
  40. 35.
    B. I. Reser, “Calculation of the magnetic properties of Fe, Co and Ni with account taken of the real band structure and spin fluctuations,” J. Phys.: Condens. Matter 11, 4871–4885 (1999).Google Scholar
  41. 36.
    B. I. Reser, “Temperature dependence of nuclear spin-relaxation rates for Fe, Co and Ni,” J. Phys.: Condens. Matter 12, 9323–9333 (2000)Google Scholar
  42. 36a.
    B. I. Reser, “Nuclear spin-relaxation rates for ferromagnetic metals at finite temperatures,” Phys. Met. Metallogr. 92 (Suppl. 1), S123–S126 (2001).Google Scholar
  43. 37.
    B. I. Reser, “Numerical calculation of local magnetic characteristics of Fe, Co and Ni at finite temperatures,” J. Phys.: Condens. Matter 14, 1285–1296 (2002).Google Scholar
  44. 38.
    B. I. Reser, “Calculation of local magnetic characteristics of ferromagnetic metals taking into account the dynamic spin fluctuations,” J. Magn. Magn. Mater. 258–259, 51–53 (2003).CrossRefGoogle Scholar
  45. 39.
    B. I. Reser, “Magnetic properties of FeNi invar calculated in the dynamic non-local approximation of the spin fluctuation theory,” J. Phys.: Condens. Matter 16, 361–371 (2004).Google Scholar
  46. 40.
    B. I. Reser, “Effect of dynamics and nonlocality of spin fluctuations on magnetization of iron and invar FeNi alloy at low temperatures,” Phys. Met. Metallogr. 97, 448–451 (2004).Google Scholar
  47. 41.
    B. I. Reser, “Temperature dependence of magnetic properties of a disordered Fe0.65Ni0.35,” Phys. Met. Metallogr. 103, 373–379 (2007).Google Scholar
  48. 42.
    J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. Lond. A 276, 238–257 (1963).CrossRefGoogle Scholar
  49. 43.
    J. Hubbard, “Calculation of the magnetic properties of iron and nickel by the functional integral method,” in Electron Correlation and Magnetism in Narrow-Band Systems, Ed. by T. Moriya (Springer, Berlin, 1981), pp. 29–37.CrossRefGoogle Scholar
  50. 44.
    A. Klejnberg and J. Spalek, “Simple treatment of the metal-insulator transition: Effects of degeneracy, temperature, and applied magnetic field,” Phys. Rev. B: Condens. Matter 57, 12041–12055 (1998).CrossRefGoogle Scholar
  51. 45.
    N. B. Melnikov, B. I. Reser, and V. I. Grebennikov, “Spin-fluctuation theory beyond Gaussian approximation,” J. Phys. A: Math. Theor. 43, 195004 (2010).CrossRefGoogle Scholar
  52. 46.
    R. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97, 660–665 (1955).CrossRefGoogle Scholar
  53. 47.
    V. I. Grebennikov and O. Sokolov, “Superconductivity of narrow-band metals in a model of multichannel scattering on electron density fluctuations,” J. Phys.: Condens. Matter 4, 3283–3288 (1992).Google Scholar
  54. 48.
    V. I. Grebennikov and D. Radzivonchik, “Spin fluctuations in disordered metallic ferrimagnetic alloys,” Solid State Phenom. 233–234, 25–29 (2015).Google Scholar
  55. 49.
    N. B. Melnikov, B. I. Reser, and V. I. Grebennikov, “Extended dynamic spin-fluctuation theory of metallic magnetism,” J. Phys.: Condens. Matter 23, 276003 (2011).Google Scholar
  56. 50.
    B. I. Reser, “Numerical method for calculation of the Fermi integrals,” J. Phys.: Condens. Matter 8, 3151–3160 (1996).Google Scholar
  57. 51.
    V. Moruzzi, J. Janak, and A. Williams, Calculated Electronic Properties of Metals (Pergamon, New York, 1978).Google Scholar
  58. 52.
    J. Crangle and G. Goodman, “The magnetization of pure iron and nickel,” Proc. R. Soc. Lond. A 321, 477–491 (1971).CrossRefGoogle Scholar
  59. 53.
    E. Wohlfarth, “Iron, cobalt and nickel,” in Ferromagnetic Materials, Ed. by E. Wohlfarth (North-Holland, Amsterdam, 1980), Vol. 1, pp. 1–70.Google Scholar
  60. 54.
    Landolt–Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group III: Crystal and Solid State Physics (Springer, Berlin, 1987), Vol. 19a.Google Scholar
  61. 55.
    O. Eriksson, B. Johansson, R. Albers, and A. Boring, “Orbital magnetism in Fe, Co, and Ni,” Phys. Rev. B: Condens. Matter 42, 2707–2710 (1990).CrossRefGoogle Scholar
  62. 56.
    L. Sandratskii and J. Kübler, “Static non-uniform magnetic susceptibility of selected transition metals,” J. Phys.: Condens. Matter 4, 6927–6942 (1992).Google Scholar
  63. 57.
    V. Moruzzi, P. Markus, K. Schwarz, and P. Mohn, “Total energy surfaces in the M-V plane for bcc and fcc cobalt,” J. Magn. Magn. Mater. 54–57, 955–956 (1986).CrossRefGoogle Scholar
  64. 58.
    P. Mohn and E. Wohlfarth, “The Curie temperature of the ferromagnetic transition metals and their compounds,” J. Phys. F: Met. Phys. 17, 2421–2430 (1987).CrossRefGoogle Scholar
  65. 59.
    J. Staunton and B. Gyorffy, “Onsager cavity fields in itinerant-electron paramagnets,” Phys. Rev. Lett. 69, 371–374 (1992).CrossRefGoogle Scholar
  66. 60.
    M. Uhl and J. Kübler, “Exchange-coupled spin-fluctuation theory: Application to Fe, Co, and Ni,” Phys. Rev. Lett. 77, 334–337 (1996).CrossRefGoogle Scholar
  67. 61.
    N. Basalis, N. Theodorakopoulos, and D. Papaconstantopoulos, “Wave-vector-dependent Stoner approach to band ferromagnetism in Ni,” Phys. Rev. B: Condens. Matter 55, 11391–11394 (1997).CrossRefGoogle Scholar
  68. 62.
    J. A. Hertz, “Critical spin fluctuations in itinerant electron ferromagnets,” Int. J. Magn. 1, 253–269 (1971).Google Scholar
  69. 63.
    K. Murata and S. Doniach, “Theory of magnetic fluctuations in itinerant ferromagnets,” Phys. Rev. Lett. 29, 285–288 (1972).CrossRefGoogle Scholar
  70. 64.
    G. Lonzarich and L. Taillefer, “Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals,” J. Phys. C: Solid State Phys. 18, 4339–4371 (1985).CrossRefGoogle Scholar
  71. 65.
    Y. Takahashi, “On the origin of the Curie–Weiss law of the magnetic susceptibility in itinerant electron ferromagnetism,” J. Phys. Soc. Jpn. 55, 3553–3573 (1986).CrossRefGoogle Scholar
  72. 66.
    Y. Takahashi, “Quantum spin fluctuation theory of the magnetic equation of state of weak itinerant-electron ferromagnets,” J. Phys.: Condens. Matter 13, 6323–6358 (2001).Google Scholar
  73. 67.
    B. I. Reser and N. B. Melnikov, “Problem of temperature dependence in the dynamic spin-fluctuation theory for strong ferromagnets,” J. Phys.: Condens. Matter 20, 285205 (2008).Google Scholar
  74. 68.
    N. B. Melnikov and B. I. Reser, “Instability analysis for the system of nonlinear equations of the dynamic spin-fluctuation theory,” in Proc. Dynamic Systems and Applications (Dynamic, Atlanta, 2008), Vol. 5, pp. 312–316.Google Scholar
  75. 69.
    B. I. Reser, V. I. Grebennikov, and N. B. Melnikov, “Temperature hysteresis in the dynamic spin-fluctuation theory for strong ferromagnets,” Solid State Phenom. 152–153, 579–582 (2009).CrossRefGoogle Scholar
  76. 70.
    T. Poston and I. Stewart, Catastrophe Theory and its Applications (Dover, New York, 1998).Google Scholar
  77. 71.
    E. F. Wassermann, “Invar: Moment-volume instabilities in transition metals and alloys”, in Ferromagnetic Materials, Ed. by K.H.J. Buschow and E.P. Wohlfarth (Elsevier, Amsterdam, 1990), Vol. 5, pp. 237–322Google Scholar
  78. 71a.
    E. Wassermann, “The Invar problem,” J. Magn. Magn. Mater. 100, 346–362 (1991).CrossRefGoogle Scholar
  79. 72.
    M. Shiga, “Invar alloys,” in Materials Science and Technology, Ed. by R. Cahn, P. Haasen, and E. Kramer, (VCH, Weinheim, 1994). Vol. 3B, Part II, p. 159.Google Scholar
  80. 73.
    The Invar Effect: A Centennial Symposium, Ed. by J. Wittenauer (The Minerals, Metals and Mater. Soc., Warrendale, 1997).Google Scholar
  81. 74.
    D. Johnson, F. Pinski, and G. Stocks, “Self-consistent electronic structure of disordered Fe0.65Ni0.35,” J. Appl. Phys. 57, 3018–3020 (1985).CrossRefGoogle Scholar
  82. 75.
    J. Crangle and G. C. Hallam, “The magnetism of fcc and bcc iron–nickel alloys,” Proc. R. Soc. Lond. A 272, 119–132 (1963).CrossRefGoogle Scholar
  83. 76.
    G. Scott, “Magnetomechanical determination of gyromagnetic ratios,” J. Phys. Soc. Jpn. 17, Suppl. B-I, 372–375 (1962).Google Scholar
  84. 77.
    Y. Prokopjev and B. I. Reser, “A single-site spin correlation function in paramagnetic iron,” J. Phys.: Condens. Matter 3, 6055–6067 (1991).Google Scholar
  85. 78.
    Y. Takahashi and H. Nakano, “Magnetovolume effect of itinerant electron ferromagnets,” J. Phys.: Condens. Matter 18, 521–556 (2006).Google Scholar
  86. 79.
    J. Zinn-Justin, Path Integrals in Quantum Mechanics (Oxford University Press, Oxford, 2004).CrossRefGoogle Scholar
  87. 80.
    H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics (Oxford University Press, Oxford, 2004), 3rd ed.Google Scholar
  88. 81.
    D. Zubarev and Y. Tserkovnikov, “The method of Green’s two-time temperature functions in equilibrium and nonequilibrium statistical mechanics,” Proc. Steklov Inst. Math. 175, 139–185 (1988).Google Scholar
  89. 82.
    N. Plakida, “The two-time Green’s function and the diagram technique,” Theor. Math. Phys. 168, 1303–1317 (2011).CrossRefGoogle Scholar
  90. 83.
    V. I. Grebennikov, “A fluctuating field theory for systems of localized magnetic moments,” Solid State Phenom. 152–153, 563–566 (2009).Google Scholar
  91. 84.
    N. B. Melnikov and G. Paradezhenko, “Magnetic phase transitions in the spin-fluctuation theory,” Theor. Math. Phys. 183, 486–497 (2015).CrossRefGoogle Scholar
  92. 85.
    N. B. Melnikov and G. Paradezhenko, “Problem of phase transition in spin-fluctuation theory,” Phys. Procedia 75, 731–738 (2015).CrossRefGoogle Scholar
  93. 86.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd ed. (Nauka, Moscow, 1976, 1995; Pergamon, Oxford, 1980, 1985)Google Scholar
  94. 87.
    A. Patashinskii and V. Pokrovskii, Fluctuation Theory of Phase Transitions (Pergamon, Oxford, 1979).Google Scholar
  95. 88.
    A. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, Oxford, 2009).Google Scholar
  96. 89.
    B. I. Reser, N. B. Melnikov, and V. I. Grebennikov, “Beyond Gaussian approximation in the spin-fluctuation theory of metallic ferromagnetism,” J. Phys.: Confer. Ser. 200, 012163 (2010).Google Scholar
  97. 90.
    J. Schrieffer, W. Evanson, and S. Wang, “Localized spin fluctuations in metals,” J. Phys. Colloq. 32, 19–25 (1971).CrossRefGoogle Scholar
  98. 91.
    J. A. Hertz, “Quantum critical phenomena,” Phys. Rev. B: Solid State 14, 1165–1184 (1976).CrossRefGoogle Scholar
  99. 92.
    P. Stamp, “Spin fluctuation theory in condensed quantum systems,” J. Phys. F: Met. Phys. 15, 1829–1865 (1985).CrossRefGoogle Scholar
  100. 93.
    B. I. Reser, N. B. Melnikov, and V. I. Grebennikov, “Extended dynamic spin-fluctuation theory with application to iron,” Solid State Phenom. 190, 55–58 (2012).CrossRefGoogle Scholar
  101. 94.
    N. B. Melnikov, B. I. Reser, and V. I. Grebennikov, “Local moments in the dynamic spin-fluctuation theory of metallic magnetism,” Solid State Phenom. 190, 43–46 (2012).CrossRefGoogle Scholar
  102. 95.
    V. Crisan, P. Entel, H. Ebert, H. Akai, D. Johnson, and J. Staunton, “Magnetochemical origin for Invar anomalies in iron-nickel alloys,” Phys. Rev. B: Condens. Matter 66, 014416 (2002).CrossRefGoogle Scholar
  103. 96.
    A. Ruban, S. Khmelevskyi, P. Mohn, and B. Johansson, “Magnetic state, magnetovolume effects, and atomic order in Fe65Ni35 Invar alloy: A first principles study,” Phys. Rev. B: Condens. Matter 76, 014420 (2007).CrossRefGoogle Scholar
  104. 97.
    M. Matsui, K. Adachi, and S. Chikazumi, “Magnetic and thermal anomalies of Invar alloys,” J. Appl. Phys. 51, 6319–6325 (1980).CrossRefGoogle Scholar
  105. 98.
    M. Shiga and Y. Nakamura, “Moment-induced magnetic scattering and magnetovolume effect in Fe65(Ni1-xMnx)35 alloys,” J. Phys. Soc. Jpn. 26, 24–32 (1969).CrossRefGoogle Scholar
  106. 99.
    H. Hasegawa, “A theory of magneto-volume effects of itinerant-electron magnets: I. Spontaneous volume magnetostriction,” J. Phys. C: Solid State Phys. 14, 2793–2808 (1981).CrossRefGoogle Scholar
  107. 100.
    Y. Kakehashi, “Theory of the Invar effect in FeNi alloy,” J. Phys. Soc. Jpn. 50, 2236–2245 (1981).CrossRefGoogle Scholar
  108. 101.
    T. Moriya and K. Usami, “Magneto-volume effect and Invar phenomena in ferromagnetic metals,” Solid State Commun. 34, 95–99 (1980).CrossRefGoogle Scholar
  109. 102.
    M. Shiga in Physics of Transition Metals 1980, Inst. Phys. Conf. Ser. No. 55, Ed. by P. Rhodes (IOP, London, 1981), p. 241Google Scholar
  110. 102a.
    M. Shiga, “Magnetovolume effects in ferromagnetic transition metals,” J. Phys. Soc. Jpn. 50, 2573–2580, 1981.CrossRefGoogle Scholar
  111. 103.
    F. Bloch, “Zur Theorie des Ferromagnetismus,” Z. Physik 61, 206–219 (1930)CrossRefGoogle Scholar
  112. 103a.
    F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,” Z. Physik 74, 295–335 (1932).CrossRefGoogle Scholar
  113. 104.
    T. Moriya and A. Kawabata, “Effect of spin fluctuations on itinerant electron ferromagnetism. II,” J. Phys. Soc. Jpn. 35, 669–676 (1973).CrossRefGoogle Scholar
  114. 105.
    T. Izuyama, D. Kim, and R. Kubo, “Band theoretical interpretation of neutron diffraction phenomena in ferromagnetic metals,” J. Phys. Soc. Jpn. 18, 1025–1042 (1963).CrossRefGoogle Scholar
  115. 106.
    J. Cooke, J. Lynn, and H. Davis, “Calculations of the dynamic susceptibility of nickel and iron,” Phys. Rev. B: Condens. Matter 21, 4118–4131 (1980).CrossRefGoogle Scholar
  116. 107.
    J. Callaway, A. Chatterjee, S. Singhal, and A. Ziegler, “Magnetic susceptibility of ferromagnetic metals: Application to nickel,” Phys. Rev. B: Condens. Matter 28, 3818–3830 (1983).CrossRefGoogle Scholar
  117. 108.
    N. B. Melnikov and B. I. Reser, “Low-temperature magnetism of metals in the dynamic spin-fluctuation theory,” J. Supercond. Nov. Magn. 28, 797–803 (2015).CrossRefGoogle Scholar
  118. 109.
    N. B. Melnikov and B. I. Reser, “Low-temperature spin fluctuations beyond spin waves,” Solid State Phenom. 233–234, 20–24 (2015).CrossRefGoogle Scholar
  119. 110.
    J. Donohue, The Structure of the Elements (Wiley, New York, 1974).Google Scholar
  120. 111.
    A. Aldred and P. Froehle, “Temperature and field dependence of the magnetization of iron,” Int. J. Magn. 2, 195–203 (1972).Google Scholar
  121. 112.
    P. Riedi, “Temperature dependence of the hyperfine field and hyperfine coupling constant of iron,” Phys. Rev. B: Solid State 8, 5243–5246 (1973).CrossRefGoogle Scholar
  122. 113.
    R. Pauthenet, “Experimental verification of spin-wave theory in high fields,” J. Appl. Phys. 53, 8187–8192 (1982).CrossRefGoogle Scholar
  123. 114.
    U. Köbler, “Temperature dependence of the spontaneous magnetization of bcc bulk iron, amorphous iron and thin iron films,” J. Phys.: Condens. Matter 14, 8861–8880 (2002).Google Scholar
  124. 115.
    J. Lynn, N. Rosov, M. Acet, and H. Bach, “Polarization analysis of the magnetic excitations in Fe65Ni35 Invar,” J. Appl. Phys. 75, 6069–6071 (1994).CrossRefGoogle Scholar
  125. 116.
    E. Wassermann and M. Acet, “Invar and anti-Invar: Magnetovolume effects in Fe-based alloys revisited,” in Magnetism and Structure in Functional Materials, Ed. by A. Planes, L. Manosa, and A. Saxena (Springer, Berlin, 2005) pp. 177–198.CrossRefGoogle Scholar
  126. 117.
    A. Okorokov, S. Grigor’ev, V. Runov, G. Gordeev, Y. Chetverikov, and G. Kopitsa, “New magnetic phenomena and polarized neutrons,” J. Surf. Invest. 1, 542–555 (2007).Google Scholar
  127. 118.
    Y. Ishikawa, S. Onodera, and K. Tajima, “Magnetic excitations in Invar alloys Fe65Ni35 and Fe3Pt,” J. Magn. Magn. Mater. 10, 183–190 (1979).CrossRefGoogle Scholar
  128. 119.
    J. Slater, “A simplification of the Hartree–Fock method,” Phys. Rev. 81, 385–390 (1951).CrossRefGoogle Scholar
  129. 120.
    H. Mook and R. Nicklow, “Neutron scattering investigation of the magnetic excitations in iron,” Phys. Rev. B: Solid State 7, 336–342 (1973).CrossRefGoogle Scholar
  130. 121.
    M. Pajda, J. Kudrnovsky, I. Turek, V. Drchal, and P. Bruno, “Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni,” Phys. Rev. B: Condens. Matter 64, 174402 (2001).CrossRefGoogle Scholar
  131. 122.
    P. Buczek, A. Ernst, and L. Sandratskii, “Different dimensionality trends in the Landau damping of magnons in iron, cobalt and nickel: Time dependent density functional study,” Phys. Rev. B: Condens. Matter 84, 174418 (2011).CrossRefGoogle Scholar
  132. 123.
    I. Nakai, “Field dependence of the Stoner-type contribution to the magnetization of fcc Fe–Ni alloys,” J. Phys. Soc. Jpn., vol. 59, 2211–2215 (1990).CrossRefGoogle Scholar
  133. 124.
    H. A. Mook, “Neutron scattering studies of magnetic excitations in itinerant magnets,” in Spin Waves and Magnetic Excitations, Ed. by A. Borovik-Romanov and S. Sinha (Elsevier, Amsterdam, 1988), pp. 425–478.CrossRefGoogle Scholar
  134. 125.
    O. Gunnarsson, “Band model for magnetism of transition metals in the spin-density-functional formalism,” J. Phys. F: Met. Phys. 6, 587–606 (1976)CrossRefGoogle Scholar
  135. 125a.
    O. Gunnarsson, “The Stoner model in the spin-density-functional formalism,” Physica B 91, 329–336 (1977).CrossRefGoogle Scholar
  136. 126.
    U. Poulsen, J. Kollár, and O. Andersen, “Magnetic and cohesive properties from canonical bands,” J. Phys. F: Met. Phys. 6, L241–L247 (1976).CrossRefGoogle Scholar
  137. 127.
    O. Andersen, J. Madsen, U. Poulsen, O. Jepsen, and J. Kollár, “Magnetic ground state properties of transition metals,” Physica B 86–88, 249–256 (1977).Google Scholar
  138. 128.
    J. Janak, “Uniform susceptibilities of metallic elements,” Phys. Rev. B: Solid State 16, 255–262 (1977).CrossRefGoogle Scholar
  139. 129.
    U. von Barth and L. Hedin, “A local exchange-correlation potential for the spin polarized case: I,” J. Phys. C: Solid State Phys. 5, 1629–1642 (1972).CrossRefGoogle Scholar
  140. 130.
    O. Gunnarsson and B. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spindensity-functional formalism,” Phys. Rev. B: Solid State 13, 4274–4298 (1976).CrossRefGoogle Scholar
  141. 131.
    W. Kohn and P. Vashishta, “General density functional theory,” in Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. March (Plenum, New York, 1983), pp. 79–147.CrossRefGoogle Scholar
  142. 132.
    R. Jones and O. Gunnarsson, “The density functional formalism, its applications and prospects,” Rev. Mod. Phys. 61, 689–746 (1989).CrossRefGoogle Scholar
  143. 133.
    B. I. Reser and Y. I. Prokopjev, “Local magnetic characteristics of ferromagnetic metals at high temperatures: I. Theory,” Phys. Met. Metallogr. 74, 123–129 (1992).Google Scholar
  144. 134.
    P. Brown, H. Capellmann, J. Déportes, D. Givord, and K. Ziebeck, “Observations of ferromagnetic correlations at high temperatures in paramagnetic iron,” J. Magn. Magn. Mater. 30, 243–248 (1982)CrossRefGoogle Scholar
  145. 134a.
    P. Brown, H. Capellmann, J. Déportes, D. Givord, and K. Ziebeck, “Ferromagnetic correlations in both the a and phases of paramagnetic iron,” J. Magn. Magn. Mater. 30, 335–339 (1982)CrossRefGoogle Scholar
  146. 134b.
    P. Brown, H. Capellmann, J. Déportes, D. Givord, and K. Ziebeck, “Spatial correlation of magnetization in the paramagnetic phases of iron and nickel,” J. Magn. Magn. Mater. 31–34, 295–296 (1983).CrossRefGoogle Scholar
  147. 135.
    P. Brown, H. Capellmann, J. Deportes, D. Givord, S. Johnson, J. Lynn, and K. Ziebeck, “The magnetic response of paramagnetic Fe at high energy transfers,” J. Phys. (Paris) 46, 827–830 (1985).CrossRefGoogle Scholar
  148. 136.
    Metallic Magnetism, Ed. by H. Capellmann, (Springer, Berlin, 1987).Google Scholar
  149. 137.
    A. Holden, V. Heine, and J. Samson, “Magnetic contributions to thermal expansion of transition metals: Implications for local moments above TC,” J. Phys. F: Met. Phys. 14, 1005–1020 (1984).CrossRefGoogle Scholar
  150. 138.
    B. I. Reser, E. Rosenfeld, and E. Shipitsyn, “Spin correlators in the one-electron approximation applied to bcc iron,” Phys. Met. Metallogr. 69, 48–57 (1990).Google Scholar
  151. 139.
    H. Hasegawa, “Wavevector-dependent spin susceptibility of iron above the Curie temperature,” J. Phys. F: Met. Phys. 13, 2655–2675 (1983).CrossRefGoogle Scholar
  152. 140.
    H. Hasegawa, “Wavevector-dependent spin susceptibility of nickel above the Curie temperature,” J. Phys. F: Met. Phys. 14, 1235–1247 (1984).CrossRefGoogle Scholar
  153. 141.
    B. I. Reser, “Local magnetic characteristics of ferromagnetic metals at high temperatures: II. Numerical calculations and comparison with experiment,” Phys. Met. Metallogr. 77, 451–458 (1994).Google Scholar
  154. 142.
    P. James, O. Eriksson, B. Johansson, and I. Abrikosov, “Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu,” Phys. Rev. B: Condens. Matter 59, 419–430 (1999)CrossRefGoogle Scholar
  155. 142a.
    P. Mohn, “A century of zero expansion,” Nature 400, 18–19 (1999)CrossRefGoogle Scholar
  156. 142b.
    M. van Schilfgaarde, I. A. Abrikosov, and B. Johansson, “Origin of the Invar effect in iron-nickel alloys,” Nature 400, 46–49 (1999).CrossRefGoogle Scholar
  157. 143.
    P. Weinberger, L. Szunyogh, C. Blaas, C. Sommers, and P. Entel, “Magnetic properties of bulk NicFe1-c alloys, their free surfaces, and related spin-valve systems,” Phys. Rev. B: Condens. Matter 63, 094417 (2001).CrossRefGoogle Scholar
  158. 144.
    P. Brown, K.-U. Neumann, and K. Ziebeck, “The temperature dependence of the magnetization distribution in Fe0.65Ni0.35 Invar: Incompatibility of the two-state model,” J. Phys.: Condens. Matter 13, 1563–1569 (2001).Google Scholar
  159. 145.
    J. Rueff, A. Shukla, A. Kaprolat, M. Krisch, M. Lorenzen, F. Sette, and R. Verbeni, “Magnetism of Invar alloys under pressure examined by inelastic X-ray scattering,” Phys. Rev. B: Condens. Matter 63, 132409 (2001).CrossRefGoogle Scholar
  160. 146.
    T. Moriya, “The effect of electron-electron interaction on the nuclear spin relaxation in metals,” J. Phys. Soc. Jpn. 18, 516–520 (1964).CrossRefGoogle Scholar
  161. 147.
    G. Carter, L. Bennett, and D. Kahan, Metallic Shifts in NMR (Pergamon, Oxford, 1977).Google Scholar
  162. 148.
    P. Ségransan, Y. Chabre, and W. Clark, “Nuclear spin relaxation and the Knight shift of 61Ni metal in the paramagnetic solid and liquid phases,” J. Phys. F: Met. Phys. 8, 1513–1524 (1978).CrossRefGoogle Scholar
  163. 149.
    M. Shaham, J. Barak, U. El-Hanany, and W. W. Warren, “NMR study of the 3d ferromagnetic metals: Critical region and paramagnetic phase,” Phys. Rev. B: Condens. Matter 22, 5400–5419 (1980).CrossRefGoogle Scholar
  164. 150.
    J. Korringa, “Nuclear magnetic relaxation and resonance line shift in metals,” Physica 16, 601–610 (1950).CrossRefGoogle Scholar
  165. 151.
    Y. Obata, “Nuclear magnetic relaxation in transition metals,” J. Phys. Soc. Jpn. 18, 1020–1024 (1963).CrossRefGoogle Scholar
  166. 152.
    Y. Yafet and V. Jaccarino, “Nuclear spin relaxation in transition metals; Core polarization,” Phys. Rev. 133, A1630–A1637 (1964).CrossRefGoogle Scholar
  167. 153.
    T. Moriya, “Nuclear magnetic relaxation in ferromagnetic transition metals,” J. Phys. Soc. Jpn. 19, 681–687 (1964).CrossRefGoogle Scholar
  168. 154.
    V. J. N. Kaplan and J. Wernick, “Nuclear relaxation studies of impurity moments in ferromagnetic metals,” Phys. Rev. Lett. 16, 1142–1145 (1966).CrossRefGoogle Scholar
  169. 155.
    R. Walstedt, V. Jaccarino, and N. Kaplan, “Nuclear magnetic relaxation in ferromagnetic transition metals,” J. Phys. Soc. Jpn. 21, 1843–1843 (1966).CrossRefGoogle Scholar
  170. 156.
    M. Salamon, “Impurity nucleus relaxation in ferromagnetic metals,” J. Phys. Soc. Jpn. 21, 2746–2747 (1966).CrossRefGoogle Scholar
  171. 157.
    M. Weger, E. Hahn, and A. Portis, “Transient excitation of nuclei in ferromagnetic metals,” J. Appl. Phys. 32, 124S–125S (1961).CrossRefGoogle Scholar
  172. 158.
    M. Weger, “Longitudinal nuclear magnetic relaxation in ferromagnetic iron, cobalt, and nickel,” Phys. Rev. 128, 1505–1511 (1962).CrossRefGoogle Scholar
  173. 159.
    V. Jaccarino, N. Kaplan, R. Walstedt, and J. Wernick, “Field dependence of nuclear relaxation in ferromagnetic metals,” Phys. Lett. 23, 514–515 (1966).CrossRefGoogle Scholar
  174. 160.
    H. Akai, “Nuclear spin-lattice relaxation of impurities in ferromagnetic iron,” Hyperfine Interactions 43, 255–270 (1988).CrossRefGoogle Scholar
  175. 161.
    H. Akai, M. Akai, S. Blügel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, and P. Dederichs, “Theory of hyperfine interactions in metals,” Prog. Theor. Phys. (Suppl.) 101, 11–77 (1990).CrossRefGoogle Scholar
  176. 162.
    G. Seewald, E. Hagn, and E. Zech, “Observation of a nuclear-magnon contribution to the nuclear spin-lattice relaxation of 191Pt in ferromagnetic cobalt,” Phys. Rev. Lett. 78, 5002–5005 (1997).CrossRefGoogle Scholar
  177. 163.
    T. Funk, E. Beck, W. Brewer, C. Bobek, and E. Klein, “Systematics of the nuclear spin-lattice relaxation rates of transition-element impurities in Fe,” J. Magn. Magn. Mater. 195, 406–419 (1999).CrossRefGoogle Scholar
  178. 164.
    S. Ivanov and M. Kurkin, “Relaxation properties of the nuclear spins in magnets,” in Dynamic and Kinetic Properties of Magnets, Ed. by S. V. Vonsovskii and E. Turov (Nauka, Moscow, 1986), p. 223 [in Russian].Google Scholar
  179. 165.
    H. Capellmann, “Ferromagnetism and strong correlations in metals,” J. Phys. F: Met. Phys. 4, 1466–1476 (1974)CrossRefGoogle Scholar
  180. 165a.
    H. Capellmann, “Theory of itinerant ferromagnetism in the 3d transition metals,” Z. Phys. B 34, 29–35 (1979).CrossRefGoogle Scholar
  181. 166.
    V. Korenman, J. Murray, and R. Prange, “Local-band theory of itinerant ferromagnetism. I. Fermi-liquid theory,” Phys. Rev. B: Condens. Matter 16, 4032–4047 (1977)CrossRefGoogle Scholar
  182. 166a.
    V. Korenman, J. Murray, and R. Prange, “Local-band theory of itinerant ferromagnetism. II. Spin waves,” Phys. Rev. B: Solid State 16, 4048–4057 (1977)CrossRefGoogle Scholar
  183. 166b.
    V. Korenman, J. Murray, and R. Prange, “Local-band theory of itinerant ferromagnetism. III. Nonlinear Landau-Lifshitz equations,” Phys. Rev. B: Solid State 16, 4058–4062 (1977).CrossRefGoogle Scholar
  184. 167.
    D. Edwards, “Some current problems in itinerant electron magnetism,” J. Magn. Magn. Mater. 15–18, 262–268 (1980).CrossRefGoogle Scholar
  185. 168.
    Y. Kakehashi and M. Patoary, “First-principles dynamical coherent-potential approximation approach to the ferromagnetism of Fe, Co, and Ni,” J. Phys. Soc. Jpn. 80, 034706 (2011).CrossRefGoogle Scholar
  186. 169.
    S. Maleyev, “Polarized neutron scattering in magnets,” Phys.-Usp. 45, 569–596 (2002).CrossRefGoogle Scholar
  187. 170.
    J. Schweizer, “Polarized neutrons and polarization analysis,” in Neutron Scattering from Magnetic Materials, Ed. by T. Chatterji (Elsevier, Amsterdam, 2006), ch. 4.Google Scholar
  188. 171.
    N. Plakida, High-Temperature Cuprate Superconductors (Springer, Berlin, 2010).CrossRefGoogle Scholar
  189. 172.
    H. Mook and J. Lynn, “Measurements of the magnetic excitations above TC in iron and nickel,” J. Appl. Phys. 57, 3006–3011 (1985).CrossRefGoogle Scholar
  190. 173.
    J. Hubbard, “Panel discussion on itinerant electron magnetism,” in Physics of Transition Metals 1980, Inst. Phys. Conf. Ser. No. 55, Ed. by P. Rhodes (IOP, London, 1981), Ch. 15, p. 669.Google Scholar
  191. 174.
    V. Antropov, “Time-dependent density-functional spin dynamics and its application for Fe and Ni,” J. Appl. Phys. 97, 10A704 (2005)CrossRefGoogle Scholar
  192. 174a.
    V. Antropov, “Magnetic short-range order above the Curie temperature of Fe and Ni,” Phys. Rev. B: Condens. Matter 72, 140406 (2005).CrossRefGoogle Scholar
  193. 175.
    X. Tao, D. Landau, T. Schulthess, and G. Stocks, “Spin waves in paramagnetic bcc iron: Spin dynamics simulations,” Phys. Rev. Lett. 95, 087207 (2005)CrossRefGoogle Scholar
  194. 175a.
    X. Tao, D. Landau, T. Schulthess, and G. Stocks, “Spin dynamics simulations of bcc iron,” J. Appl. Phys. 97, 10A722 (2005).CrossRefGoogle Scholar
  195. 176.
    N. B. Melnikov and B. I. Reser, “Short-range order above TC in ferromagnetic metals,” Phys. Procedia 75, 739–746 (2015).CrossRefGoogle Scholar
  196. 177.
    N. B. Melnikov and B. I. Reser, “Short-range order above the Curie temperature in the dynamic spin-fluctuation theory,” J. Magn. Magn. Mater. 397, 347–351 (2016).CrossRefGoogle Scholar
  197. 178.
    N. B. Melnikov, B. I. Reser, and G. Paradezhenko, “Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments,” J. Magn. Magn. Mater. 411, 133–139 (2016).CrossRefGoogle Scholar
  198. 179.
    N. B. Melnikov, G. Paradezhenko, and B. I. Reser, “Spin-density correlations and magnetic neutron scattering in ferromagnetic metals,” Theor. Math. Phys. 191, in press (2017).Google Scholar
  199. 180.
    K. Ziebeck and P. Brown, “Measurement of the paramagnetic response function in the weak itinerant magnetic compound MnSi using polarised neutron scattering,” J. Phys. F: Metal Phys. 10, 2015–2024 (1980).CrossRefGoogle Scholar
  200. 181.
    G. Shirane, P. Böni, and J. Wicksted, “Paramagnetic scattering from Fe (3.5 at. % Si): Neutron measurements up to the zone boundary,” Phys. Rev. B: Condens. Matter 33, 1881–1885 (1986).CrossRefGoogle Scholar
  201. 182.
    R. Elliott, “Theory of neutron scattering by conduction electrons in a metal and on the collective electron model of a ferromagnet,” Proc. R. Soc. Lond. A 235, 289–304 (1956).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Metal PhysicsUral Branch of Russian Academy of SciencesEkaterinburgRussia

Personalised recommendations