The Physics of Metals and Metallography

, Volume 117, Issue 7, pp 655–664 | Cite as

Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling

  • M. A. KorotinEmail author
  • Z. V. Pchelkina
  • N. A. Skorikov
  • A. V. Efremov
  • V. I. Anisimov
Theory of Metals


Based on the coherent potential approximation, the method of calculating the electronic structure of nonstoichiometric and hyperstoichiometric compounds with strong electron correlations and spin-orbit coupling has been developed. This method can be used to study both substitutional and interstitial impurities, which is demonstrated based on the example of the hyperstoichiometric UO2.12 compound. The influence of the coherent potential on the electronic structure of compounds has been shown for the nonstoichiometric UO1.87 containing vacancies in the oxygen sublattice as substitutional impurities, for stoichiometric UO2 containing vacancies in the oxygen sublattice and oxygen as an interstitial impurity, and for hyperstoichiometric UO2.12 with excess oxygen also as interstitial impurity. In the model of the uniform distribution of impurities, which forms the basis of the coherent potential approximation, the energy spectrum of UO2.12 has a metal-like character.


electronic structure magnetic properties coherent potential approximation strong electron correlations spin-orbit coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Petit, B. Morel, C. Lemaignan, A. Pasturel, and B. Bigot, “Cohesive properties of UO2,” Philos. Mag. B 73, 893–904 (1996).CrossRefGoogle Scholar
  2. 2.
    Y. Baer and J. Schoenes, “Electronic structure and Coulomb correlation energy in UO2 single crystal,” Solid State Commun. 33, 885–888 (1980).CrossRefGoogle Scholar
  3. 3.
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, Z. Szotek, W. M. Temmerman, and A. P. Sutton, “Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA+U, SIC-LSDA and EELS study of UO2 and NiO,” Phys. Status Solidi A 166, 429–443 (1998).CrossRefGoogle Scholar
  4. 4.
    R. Laskowski, G. K. H. Madsen, P. Blaha, and K. Schwarz, “Magnetic structure and electric-field gradients of uranium dioxide: An ab initio study,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 140408 (2004).CrossRefGoogle Scholar
  5. 5.
    D. Gryaznov, E. Heifets, and D. Sedmidubsky, “Density functional theory calculations on magnetic properties of compounds,” Phys. Chem. Chem. Phys. 12, 12273–12278 (2010).CrossRefGoogle Scholar
  6. 6.
    A. Modin, M.-T. Suzuki, J. Vegelius, Y. Yun, D. K. Shuh, L. Werme, J. Nordgren, P. M. Oppeneer, and S. M. Butorin, “5 f-shell correlation effects in dioxides of light actinides studied by O 1s X-ray absorption and emission spectroscopies and first-principles calculations,” J. Phys.: Condens. Matter 27, 315503 (2015).Google Scholar
  7. 7.
    V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyzyk, and G. A. Sawatzky, “Density-functional theory and NiO photoemission spectra,” Phys. Rev. B: Condens. Matter 48, 16929–16934 (1993).CrossRefGoogle Scholar
  8. 8.
    K. N. Kudin, G. E. Scuseria, and R. L. Martin, “Hybrid density-functional theory and the insulating gap of UO2,” Phys. Rev. Lett. 89, 266402 (2002).CrossRefGoogle Scholar
  9. 9.
    J. Koloren, A. B. Shick, and A. I. Lichtenstein, “Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory,” Phys. Rev. B: Condens. Matter Mater. Phys. 92, 085125 (2015).CrossRefGoogle Scholar
  10. 10.
    B. T. M. Willis, “Positions of the oxygen atoms in UO2.13,” Nature 197, 755–756 (1963).CrossRefGoogle Scholar
  11. 11.
    B. T. M. Willis, “The defect structure of the hyper-stoichiometric uranium dioxide,” Acta Crystallogr., A 34, 88–90 (1978).CrossRefGoogle Scholar
  12. 12.
    D. J. M. Bevan, I. E. Grey, and B. T. M. Willis, “The crystal structure of α-U4O9–y,” J. Solid State Chem. 61, 1–7 (1986).CrossRefGoogle Scholar
  13. 13.
    N. A. Brincat, M. Molinari, S. C. Parker, G. C. Allen, and M. T. Storr, “Computer simulation of defect clusters in UO2 and their dependence on composition,” J. Nuclear Mater. 456, 329–333 (2015).CrossRefGoogle Scholar
  14. 14.
    P. Soven, “Coherent-potential model of substitutional disordered alloys,” Phys. Rev. 156, 809–813 (1967).CrossRefGoogle Scholar
  15. 15.
    B. Belbeoch, C. Piekarski, and P. Perio, “Structure de U4O9,” Acta Crystallogr. 14, 837–843 (1961).CrossRefGoogle Scholar
  16. 16.
    B. T. M. Willis, “Crystallographic studies of anionexcess uranium oxides,” J. Chem. Soc. 83, 1073–1081 (1987).Google Scholar
  17. 17.
    J. S. Faulkner and J. M. Stocks, “Calculating properties with the coherent potential approximation,” Phys. Rev. B: Condens. Matter 21, 3222–3244 (1980).CrossRefGoogle Scholar
  18. 18.
    J. Kudrnovsky and V. Drchal, “Electronic structure of random alloys by the linear band-structure methods,” Phys. Rev. B: Condens. Matter 41, 7515–7528 (1990).CrossRefGoogle Scholar
  19. 19.
    L. A. Abrikosov, Yu. H. Vekilov, and A. V. Ruban, “Fast LMTO-CPA method for electronic structure calculations of disordered alloys: Application to Cu–Ni and Cu–Au systems,” Phys. Lett. A 154, 407–412 (1991).CrossRefGoogle Scholar
  20. 20.
    M. A. Korotin, Z. V. Pchelkina, N. A. Skorikov, E. Z. Kurmaev, and V. I. Anisimov, “The coherent potential approximation for strongly correlated systems: Electronic structure and magnetic properties of NiO–ZnO solid solutions,” J. Phys.: Condens. Matter 26, 115501 (2014).Google Scholar
  21. 21.
    O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B: Solid State 12, 3060–3083 (1975).CrossRefGoogle Scholar
  22. 22.
    M. A. Korotin, N. A. Skorikov, S. L. Skornyakov, A. O. Shorikov, and V. I. Anisimov, “Inclusion of effects of self-consistency of the electron density within the LDA+U+SO method implemented in the temperature Green’s function formalism in the basis of the Wannier functions,” JETP Lett. 100, 823–828 (2014).CrossRefGoogle Scholar
  23. 23.
    V. A. Alekseev, L. A. Anan’eva, and R. P. Rafal’skii, “Dependence of the UO2+x lattice parameter on the composition,” Izv. Akad. Nauk SSSR, Ser. Geol., No. 9, 80–89 (1979).Google Scholar
  24. 24.
    O. K. Andersen and O. Jepsen, “Explicit, first-principles tight-binding theory,” Phys. Rev. Lett. 53, 2571–2574 (1984).CrossRefGoogle Scholar
  25. 25.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, “Full orbital calculation scheme for materials with strongly correlated electrons,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 125119 (2005).CrossRefGoogle Scholar
  26. 26.
    R. Caciuo, G. Amoretti, P. Santini, G. H. Lander, J. Kulda, and P. de V. du Plessis, “Magnetic excitations and dynamical Jahn–Teller distortions in UO2,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 13892–13900 (1999).CrossRefGoogle Scholar
  27. 27.
    T. Yamazaki and A. Kotani, “Systematic analysis of 4f core photoemission spectra in actinide oxides,” J. Phys. Soc. Jpn. 60, 49–52 (1991).CrossRefGoogle Scholar
  28. 28.
    P. Burlet, J. Rossat-Mignod, S. Vuevel, O. Vogt, J. C. Spirlet, and J. Rebizant, “Neutron diffraction on actinides,” J. Less-Common Met. 121, 121–139 (1986).CrossRefGoogle Scholar
  29. 29.
    S. B. Wilkins, R. Caciuo, C. Detlefs, J. Rebizant, E. Colineau, F. Wastin, and G. H. Lander, “Direct observation of electric-quadrupolar order in UO2,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 060406 (2006).CrossRefGoogle Scholar
  30. 30.
    B. Dorado, B. Amadon, M. Freyss, and M. Bertolus, “DFT+U calculations of the ground state and metastable states of uranium dioxide,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 235125 (2009).CrossRefGoogle Scholar
  31. 31.
    G. Jomard, B. Amadon, F. Bottin, and M. Torrent, “Structural, thermodynamic, and electronic properties of plutonium oxides from first principles,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 075125 (2008).CrossRefGoogle Scholar
  32. 32.
    J. Schoenes, “Optical properties and electronic structure of UO2,” J. Appl. Phys. 49, 1463–1465 (1978).CrossRefGoogle Scholar
  33. 33.
    H. J. Vidberg and J. W. Serene, “Solving the Eliashberg equations by means of N-point Pade approximants,” J. Low Temp. Phys. 29, 179–192 (1977).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. A. Korotin
    • 1
    Email author
  • Z. V. Pchelkina
    • 1
  • N. A. Skorikov
    • 1
  • A. V. Efremov
    • 1
  • V. I. Anisimov
    • 1
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations