The Physics of Metals and Metallography

, Volume 117, Issue 9, pp 870–875 | Cite as

Effect of water intercalation on the structure and electrophysical properties of YBa2Cu3O6.9

  • I. B. Bobylev
  • N. A. Zyuzeva
  • M. V. Degtyarev
  • E. G. Gerasimov
  • Yu. S. Ponosov
  • V. P. Pilyugin
Electrical and Magnetic Properties


The influence of water vapors and plastic deformation on the structure and electrophysical properties of YBa2Cu3O6.9 (123) has been studied. It has been established that, at T = 200°C, the introduction of water into the structure of YBa2Cu3O6.9 leads to its transition into a defect tetragonal phase of the 124 type as a result of the formation of planar stacking faults. After annealing at T = 930°C, these defects are partially retained and are efficient centers of pinning in the magnetic fields applied perpendicularly to the c axis, which makes it possible to increase (by an order of magnitude) the critical current density in the high-textured ceramics at 77 K in the external magnetic field of 5–10 T. The plastic deformation of the hydrated ceramics favors the reverse transition of the arising 124 phase to the 123 phase at T = 930°C and is accompanied by a recrystallization of the material, which leads to the appearance of a texture and an increase the critical current density.


HTSC heat treatment effect of water electrophysical properties structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Koblischka and M. Murakami, “Pinning mechanisms in bulk high-T c superconductors,” Supercond. Sci. Technol. 13, 738–744 (2000).CrossRefGoogle Scholar
  2. 2.
    M. Muralidhar and M. Murakami, “Effect of matrix composition on the flux pinning in a (Nd, Eu, Gd)Ba2- Cu3Oy superconductor,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 13911–13914 (2000).CrossRefGoogle Scholar
  3. 3.
    Yu. D. Tretyakov and E. A. Goodilin, “Chemical design of metal-oxide superconductors,” Phys. B 321, 249–256 (2002).CrossRefGoogle Scholar
  4. 4.
    V. Selvamanchickam, Y. Yao, Y. Chen, T. Shi, Y. Liu, N. D. Khatri, J. Liu, C. Lei, E. Galstyan, and G. Majkic, “The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd; Y)Ba2Cu3Ox superconducting tapes,” Supercond. Sci. Technol. 25, 125013 (2012).CrossRefGoogle Scholar
  5. 5.
    Yu. D. Tret’yakov and E. A. Gudilin, “Chemical principles of preparation of metal-oxide superconductors,” Russ. Chem. Rev. 69, 1–34 (2000).CrossRefGoogle Scholar
  6. 6.
    B. Maiorov, S. A. Baily, H. Zhou, O. Ugurlu, J. A. Kennison, P. C. Dowden, T. G. Holesinger, S. R. Foltyn, and L. Civale, “Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7,” Nature Mater. 8, 398–404 (2009).CrossRefGoogle Scholar
  7. 7.
    R. Zhao, M. J. Goringe, S. Myhra, and P. S. Turner, “Transmission electron microscopy and high-resolution transmission electron microscopy studies of the early stages in the degradation of YBa2Cu3O7–δ superconductor in water vapour,” Philos. Mag. A 66, 491–506 (1992).CrossRefGoogle Scholar
  8. 8.
    I. B. Bobylev, S. V. Sudareva, N. A. Zyuzeva, T. P. Krinitsina, A. V. Korolev, Yu. V. Blinova, and E. P. Romanov, “Effect of partial substitution of europium and neodymium for yttrium on the low-temperature spinodal decomposition of a 123 phase,” Phys. Met. Metallogr. 98, 288–293 (2004).Google Scholar
  9. 9.
    W. Gunther, R. Schollhorn, H. Siegle, and Ch. Thomsen, “Topotactic reactions of superconducting YBa2Cu3O7 thin films with water vapor,” Solid State Ionics 84, 23–32 (1996).CrossRefGoogle Scholar
  10. 10.
    W. Günther, R. Schollhorn, M. Epple, H. Siegle, Ch. Thomsen, B. Kabius, U. Poppe, J. Schubert, and W. Zander, “Hydrogen and water intercalation into YBa2Cu3O7–δ: Structural properties of H2YBa2Cu3O8–δ,” Philos. Mag. A 79, 449–466 (1999).CrossRefGoogle Scholar
  11. 11.
    S. V. Sudareva, M. V. Kuznetsov, E. I. Kuznetsova, Yu. V. Blinova, E. P. Romanov, and I. B. Bobylev, “Nature of heavy-atom disordering in the YBa2Cu3O6.8 (1.5 at. % Ce) single crystal: X-ray photoelectron spectroscopy,” Phys. Met. Metallogr. 108, 569–578 (2009).CrossRefGoogle Scholar
  12. 12.
    N. A. Zyuzeva and I. B. Bobylev, “Peculiatities of microstructure of YBa2Cu3O7–δ heat-treated under different conditions,” Phys. Met. Metallogr. 115, 358–364.Google Scholar
  13. 13.
    S. V. Sudareva, E. P. Romanov, T. P. Krinitsina, E. I. Kuznetsova, Yu. V. Blinova, I. B. Bobylev, N. A. Zyuzeva, and A. M. Burkhanov, “Fine structure and the mechanism of the low-temperature decomposition of the nonstochiometric compounds YBa2Cu3O6.8 and YBa2Cu3O6.8 doped with Ce,” Phys. Met. Metallogr. 106, 364–373 (2008).CrossRefGoogle Scholar
  14. 14.
    I. B. Bobylev, E. I. Kuznetsova, N. A. Zyuzeva, T. P. Krinitsina, S. V. Sudareva, and E. P. Romanov, “Effect of the atmosphere of low-temperature annealing on the structure and electrophysical properties of nonstoichiometric YBa2Cu3O7–δ ceramics,” Phys. Met. Metallogr. 110, 378–384 (2010).CrossRefGoogle Scholar
  15. 15.
    I. B. Bobylev, N. A. Zyuzeva, and E. P. Romanov, “Electrophysical properties and the structure of the YBa2Cu3Oy compound thermally restored after lowtemperature decomposition,” Phys. Solid State 52, 1338–1341 (2010).CrossRefGoogle Scholar
  16. 16.
    I. B. Bobylev and N. A. Zyuzeva, “Effect of low-temperature treatment and subsequent high-temperature annealing on the critical current density of YBa2Cu3Oy,” Phys. Solid State 54, 1332–1335 (2012).CrossRefGoogle Scholar
  17. 17.
    G. Kozlovski, I. Maartense, R. Spyker, R. Leese, and C. E. Oberly, “Critical current density enhancement in YBa2Cu3O7–x–Silver composite superconductor,” Physica A 173, 195–200 (1991).CrossRefGoogle Scholar
  18. 18.
    S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang, and M. Maley, “Materials science challenges for high-temperature superconducting wire,” Nature Mater. 6, 631–642 (2007).CrossRefGoogle Scholar
  19. 19.
    E. I. Kuznetsova, T. P. Krinitsina, I. B. Bobylev, N. A. Zyuzeva, and E. P. Romanov, “Microstructure of YBa2Cu3O6.8 after low-temperature annealing and subsequent restoration,” Phys. Met. Metalligr. 115, 793–799 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. B. Bobylev
    • 1
  • N. A. Zyuzeva
    • 1
  • M. V. Degtyarev
    • 1
  • E. G. Gerasimov
    • 1
  • Yu. S. Ponosov
    • 1
  • V. P. Pilyugin
    • 1
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations