Advertisement

The Physics of Metals and Metallography

, Volume 117, Issue 4, pp 336–347 | Cite as

Effect of temperature of HPT deformation and the initial orientation on the structural evolution in single-crystal niobium

  • T. M. Gapontseva
  • M. V. Degtyarev
  • V. P. Pilyugin
  • T. I. Chashchukhina
  • L. M. Voronova
  • A. M. Patselov
Structure, Phase Transformations, and Diffusion

Abstract

The structural evolution and hardness of sing-crystal niobium with various initial orientations are investigated after its deformation in Bridgman anvils at room (290 K) and cryogenic (80 K) temperatures. It is shown that no twinning occurs upon cryogenic deformation; thin prolonged bands dividing the matrix into weakly misoriented regions are formed. The uniform-in-size structure of a nanoscale level (d av = 40 nm) is formed during cryogenic deformation after the maximum achieved true strain. The average microcrystallite size observed after room-temperature deformation is 120 nm.

Keywords

niobium severe plastic deformation temperature structure single-crystal orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Korznikov, A. N. Tyumentsev, and I. A. Ditenberg, “On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion,” Phys. Met. Metallogr. 106, 418–423 (2008).CrossRefGoogle Scholar
  2. 2.
    A. P. Zhilyaev and T. G. Langdon, “Using high-pres-sure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).CrossRefGoogle Scholar
  3. 3.
    V. Levit and N. Smirnova, “Severe plastic deformation of single crystals,” in Severe Plastic Deformation, Ed. by Burhanettin S. Altan (Nova Sci., New York, 2006), pp. 73–94.Google Scholar
  4. 4.
    G. S. D’yakonov, S. V. Zherebtsov, M. V. Klimova, and G. A. Salishchev, “Microstructure evolution of com-mercial-purity titanium during cryorolling,” Phys. Met. Metallogr. 116, 182–1898 (2015).CrossRefGoogle Scholar
  5. 5.
    M. A. Meyers, O. Vohringer, and V. A. Lubarda, “The onset of twinning in metals: A constitutive descrip-tion,” Acta Mater. 49, 4025–39 (2001).CrossRefGoogle Scholar
  6. 6.
    J. W. Christian and S. Mahajan, “Deformation twin-ning,” Prog. Mater. Sci. 39, 1–157 (1995).CrossRefGoogle Scholar
  7. 7.
    V. P. Pilyugin, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, V. B. Vykhodets, and T. E. Kuren-nykh, “Structure evolution of pure iron upon low-tem-perature deformation under high pressure,” Phys. Met. Metallogr. 110, 564–573 (2010).CrossRefGoogle Scholar
  8. 8.
    V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pres-sure,” Phys. Met. Metallogr. 105, 409–418 (2008).CrossRefGoogle Scholar
  9. 9.
    V. V. Rybin, N. Yu. Zolotarevskii, and E. A. Ushanova, “Fragmentation of crystals upon deformation twinning and dynamic recrystallization,” Phys. Met. Metallogr. 116, 730–744 (2015).CrossRefGoogle Scholar
  10. 10.
    V. P. Pilyugin, L. M. Voronova, T. M. Gapontseva, T. I. Chashchukhina, and M. V. Degtyarev, “Structure and hardness of molybdenum upon deformation under pressure at room and cryogenic temperatures,” Int. J. Refract. Met. Hard Mater. 43, 59–63 (2014).CrossRefGoogle Scholar
  11. 11.
    K. V. Ivanov, “Characteristic features and thermal sta-bility of molybdenum processed by different ways of severe plastic deformation,” Mater Sci. Forum 584–586, 917–922 (2008).CrossRefGoogle Scholar
  12. 12.
    T. Suzuki, H. Koizumi, and H. O. K. Kirchner, “Plastic flow stress of B.C.C. transition metals and the Peierls potential,” Acta Metall. Mater. 43, 2177–2187 (1995).CrossRefGoogle Scholar
  13. 13.
    E. N. Popova, A. V. Stolbovskii, V. V. Popov, and V. P. Pilyugin, “Evolution of Niobium Structure upon Severe Plastic Deformation by Different Methods,” Deform. Fract. Mater., No. 1, 13–17 (2009).Google Scholar
  14. 14.
    H. R. Z. Sandim, H. H. Bernardi, B. Verlinden, and D. Raabe, “Equal channel angular extrusion of nio-bium single crystals,” Mater. Sci. Eng., A 467, 44–52 (2007).CrossRefGoogle Scholar
  15. 15.
    R. Srinivasan, G. B. Viswanathan, V. I. Levit, and H. L. Fraser, “Orientation effect on recovery and recrystallization of cold rolled niobium single crystals,” Mater. Sci. Eng., A 507, 179–189 (2009).CrossRefGoogle Scholar
  16. 16.
    W. A. Spitzig, C. L. Trybus, and F. C. Laabs, “Structure properties of heavily cold-drawn niobium,” Mater. Sci. Eng., A 145, 179–187 (1991).CrossRefGoogle Scholar
  17. 17.
    E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion,” Phys. Met. Metallogr. 103, 407–413 (2007).CrossRefGoogle Scholar
  18. 18.
    V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin, and N. K. Arkhipova, “Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained,” Phys. Met. Metal-logr. 113, 295–301 (2012).CrossRefGoogle Scholar
  19. 19.
    A. V. Mats and V. I. Sokolenko, “Nanostructure of nio-bium after low-temperature quasi-hydrostatic extru-sion,” Probl. Mater. Sci., No. 1, 224–228 (2007).Google Scholar
  20. 20.
    J.-Y. Kim, D. Jang, and J. R. Greer, “Tensile and com-pressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale,” Acta Mater. 58, 2355–2363 (2010).CrossRefGoogle Scholar
  21. 21.
    V. V. Shpeizman, V. I. Nikolaev, B. I. Smirnov, A. B. Lebedev, and V. I. Kopylov, “Low-temperature deformation of nanocrystalline niobium,” Phys. Solid State 42, 1066–1069 (2000).CrossRefGoogle Scholar
  22. 22.
    V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, I. D. Gornaya, and A. D. Vasil’ev, Deformation Strengthening and Frac-ture of Polycrystalline Metals (Naukova Dumka, Kiev, 1987) [in Russian].Google Scholar
  23. 23.
    V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].Google Scholar
  24. 24.
    M. V. Degtyarev, “Multistage nature of the structure evolution in iron and structural steels upon shear under pressure,” Phys. Met. Metallogr. 99, 595–608 (2005).Google Scholar
  25. 25.
    L. Zhu, M. Seefeldt, and B. Verlinden, “Three Nb sin-gle crystals processed by equal-channel angular press-ing—Part I: Dislocation substructure,” Acta Mater. 61, 4490–4503 (2013).CrossRefGoogle Scholar
  26. 26.
    L. Zhu, M. Seefeldt, and B. Verlinden, “Three Nb sin-gle crystals processed by equal-channel angular press-ing—Part II: Mesoscopic bands,” Acta Mater. 61, 4504–4511 (2013).CrossRefGoogle Scholar
  27. 27.
    N. A. Smirnova, V. I. Levit, M. V. Degtyarev, V. M. Gundyrev, V. P. Pilyugin, and L. S. Davydova, “Development of orientational instability in FCC sin-gle-crystals at high degrees of plastic deformation,” Phys. Met. Metallogr. 65, 145–151 (1988).Google Scholar
  28. 28.
    R. W. Armstrong, “The influence of polycrystal grain size on several mechanical properties of materials,” Metall. Trans. 1, 1169–1176 (1970).Google Scholar
  29. 29.
    S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-ray and Electron Optic Analysis (MISIS, Moscow, 2002) [in Russian].Google Scholar
  30. 30.
    R. Honecombe, Plastic Deformation of Metals (Arnold, London, 1968; Mir, Moscow, 1972).Google Scholar
  31. 31.
    M. I. Gol’dshtein, V. S. Litvinov, and B. M. Bronfin, Metallophysics of High-Strength Alloys (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  32. 32.
    T. M. Gapontseva, V. P. Pilyugin, M. V. Degtyarev, L. M. Voronova, T. I. Chashchukhina, and A. M. Patselov, “Structural changes and properties of molybdenum upon cold and cryogenic deformation under pressure,” Russ. Metall. (Metally) 2014, 812–816 (2014).CrossRefGoogle Scholar
  33. 33.
    M. V. Kuznetsov, A. S. Razinkin, and A. L. Ivanovskii, “Oxide nanostructures on a Nb surface and related sys-tems: Experiments and ab initio calculations,” Phys.-Usp. 53, 995–1014 (2010).CrossRefGoogle Scholar
  34. 34.
    V. Yu. Novikov, Secondary Recrystallization (Metal-lurgiya, Moscow, 1990) [in Russian].Google Scholar
  35. 35.
    V. V. Rybin, Parge Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • T. M. Gapontseva
    • 1
  • M. V. Degtyarev
    • 1
  • V. P. Pilyugin
    • 1
  • T. I. Chashchukhina
    • 1
  • L. M. Voronova
    • 1
  • A. M. Patselov
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations