Advertisement

The Physics of Metals and Metallography

, Volume 117, Issue 3, pp 267–274 | Cite as

Effect of Annealing Temperature on the Recrystallization of Nickel with Different Ultradisperse Structures

  • Yu. G. Krasnoperova
  • M. V. Degtyarev
  • L. M. Voronova
  • T. I. Chashchukhina
Structure, Phase Transformations, and Diffusion

Abstract

Various structures (cellular, mixed, and submicrocrystaline) were realized in samples of single-crystal nickel (99.98 wt % purity) using shear deformation under a pressure at room temperature. The presence of microcrystallites in the nickel structure after deformation was shown to lead to the development of recrystallization during annealing in the temperature range of 250–350°C via both continuous and discontinuous mechanisms. In the case of the continuous mechanism, the microcrystallites formed during deformation are recrystallization centers; in the case of the discontinuous mechanism, the recrystallization centers are the thermoactivated nuclei formed during annealing. A nonmonotonous dependence of the average recrystallized-grain size on the heating temperature was found and causes for this dependence are discussed.

Keywords

nickel shear under pressure submicrocrystalline structure recrystallization grain growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, L. S. Davydova, and V. A. Sazonova, “Evolution of structure of fcc single crystals upon large plastic deformations,” Phys. Met. Metallogr. 61, 6, 127–134 (1986).Google Scholar
  2. 2.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].Google Scholar
  3. 3.
    M. V. Degtyarev, “Multistage nature of the structure evolution in iron and structural steels upon shear under pressure,” Phys. Met. Metallogr. 99, 595–608 (2005).Google Scholar
  4. 4.
    V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–419 (2008).CrossRefGoogle Scholar
  5. 5.
    V. P. Pilyugin, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, V. B. Vykhodets, and T. E. Kurennykh, “Structure evolution of pure iron upon low-temperature deformation under high pressure,” Phys. Met. Metallogr. 110, 564–573 (2010).CrossRefGoogle Scholar
  6. 6.
    V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, and V. P. Pilyugin, “Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 115, 682–691 (2014).CrossRefGoogle Scholar
  7. 7.
    L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104, 262–273 (2007).CrossRefGoogle Scholar
  8. 8.
    Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, 79–86 (2015).CrossRefGoogle Scholar
  9. 9.
    S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 1978) [in Russian].Google Scholar
  10. 10.
    R. K. Islamgaliev, F. Chmelik, and R. Kuzel, “Thermal structure changes in copper and nickel processed by severe plastic deformation,” Mater. Sci. Eng., A 234–236, 335–338 (1997).CrossRefGoogle Scholar
  11. 11.
    F. J. Humphreys, “Grain and subgrain characterisation by electron backscatter diffraction,” J. Mater. Sci. 36, 3833–3854 (2001).CrossRefGoogle Scholar
  12. 12.
    N. A. Saltykov, Quantitative Stereology (Metallurgiya, Moscow, 1970) [in Russian].Google Scholar
  13. 13.
    V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian].Google Scholar
  14. 14.
    N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, M. V. Degtyarev, “Peculiarities of low-temperature recrystallization of nickel and copper,” Phys. Met. Metallogr. 62, 3, 140–144 (1986).Google Scholar
  15. 15.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).CrossRefGoogle Scholar
  16. 16.
    H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010).CrossRefGoogle Scholar
  17. 17.
    M. V. Degtyarev, L. M. Voronova, V. V. Gubernatorov, and T. I. Chashchukhina, “On the thermal stability of the microcrystalline structure in single-phase metallic materials,” Dokl.-Phys. 47, 647–650 (2002).CrossRefGoogle Scholar
  18. 18.
    V. N. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, L. M. Malashenko, and V. A. Kukareko, “Recrystallization in microcrystalline copper and nickel produced by equal-channel angular pressing: I. Structural investigations. Effect of anomalous growth,” Phys. Met. Metallogr. 96, 486–495 (2003).Google Scholar
  19. 19.
    A. A. Nazarova, R. R. Mulyukov, V. V. Rubanik, Yu. V. Tsarenko, and A. A. Nazarov, “Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel,” Phys. Met. Metallogr. 110, 574–581 (2010).CrossRefGoogle Scholar
  20. 20.
    P. V. Kuznetsov, I. V. Petrakova, O. G. Sanarova, and A. V. Korznikov, “Effect of tempering on grain and subgrain structure and mechanical properties of submicrocrystalline nickel,” Deform. Razrush. Mater., No. 1, 33–39 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. G. Krasnoperova
    • 1
  • M. V. Degtyarev
    • 1
  • L. M. Voronova
    • 1
  • T. I. Chashchukhina
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations