The Physics of Metals and Metallography

, Volume 117, Issue 2, pp 160–166 | Cite as

Precipitation-hardening stainless steels with a shape-memory effect

  • V. V. Sagaradze
  • S. V. Afanasiev
  • E. G. Volkova
  • V. A. Zavalishin
Structure, Phase Transformations, and Diffusion


The possibility of obtaining the shape-memory effect as a result of the γ → ε → γ transformations in aging stainless steels strengthened by VC carbides has been investigated. Regimes are given for strengthening aging (at 650 and 720°C) for stainless steels that predominantly contain (in wt %) 0.06–0.45C, 1–2V, 2–5Si, 9 and 13–14Cr. The values of reversible deformation e (amount of shape-memory effect) determined after heating to 400°C in samples preliminarily deformed to 3.5–4% vary from 0.15 to 2.7%, depending on the composition of the steels and regimes of stabilizing and destabilizing aging.


shape-memory effect (SME) aging stainless steels vanadium carbide VC martensitic transformation ε phase electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Sagaradze, Ye. V. Belozerov, N. L. Pecherkina, and M. L. Mukhin, “The shape memory effect in highstrength precipitation-hardening austenitic steels,” in Proc. Int. Conf. on Martensitic Transformations, Shanghai, 2005.Google Scholar
  2. 2.
    V. V. Sagaradze, Ye. V. Belozerov, N. L. Pecherkina, M. L. Mukhin, and Yu. R. Zaynutdinov, “The shape memory effect in high-strength precipitation-hardening austenitic steels,” Mater. Sci. Eng., A 438–440, 812–815 (2006).CrossRefGoogle Scholar
  3. 3.
    V. V. Sagaradze, B. V. Belozerov, M. L. Mukhin, N. L. Pecherkina, V. A. Zavalishin, and Yu. R. Zainutdinov, “New method of mechanical alloying of ODS steels using iron oxides,” Phys. Met. Metallogr. 101, 566–576 (2006).CrossRefGoogle Scholar
  4. 4.
    V. V. Sagaradze, M. L. Mukhin, E. V. Belozerov, Yu. R. Zainutdinov, N. L. Pecherkina, and Yu. I. Filippov, “Controlled shape memory effect in high strength Mn and Cr–Mn steels,” Mater. Sci. Eng., A 481–482, 742–746 (2008).CrossRefGoogle Scholar
  5. 5.
    V. V. Sagaradze, I. I. Kositsyna, E. V. Belozerov, and Yu. R. Zainutdinov, “High-strength precipitationhardening austenitic Fe–Mn–V–Mo–C steels with shape memory effect,” Mater. Sci. Eng., A 481–482, 747–751 (2008).CrossRefGoogle Scholar
  6. 6.
    V. V. Sagaradze, V. I. Voronin, Yu. I. Filippov, V.A.Kazantsev, M. L. Mukhin, E. V. Belozerov, N. L. Pecherkina, N. V. Kataeva, and A. G. Popov, “Martensitic transformations e(a) and the shapememory effect in aging high-strength manganese austenitic steels,” Phys. Met. Metallogr. 106, 630–640 (2008).CrossRefGoogle Scholar
  7. 7.
    V. V. Sagaradze, S. V. Afanasiev, and N. V. Kataeva, “Shape memory effect in Mn–V–C austenitic steels involving deformation reorientation of e-martensite,” Phys. Met. Metallogr. 114, 322–326 (2013).CrossRefGoogle Scholar
  8. 8.
    K. Murakami, H. Otsuka, H. G. Suzuki, and S. Matsuda, “Complete shape memory effect in polycrystalline Fe-Mn–Si alloys,” in ICOMAT-86 (Nara, 1987), pp. 985–988.Google Scholar
  9. 9.
    V. G. Gavriljuk, V. V. Bliznuk, V. D. Shanina, and S. P. Kolesnik, “Effect of silicon on atomic distribution and shape memory in Fe–Mn base alloys,” Mater. Sci. Eng., A 406, 1–10 (2005).CrossRefGoogle Scholar
  10. 10.
    A. Baruj, T. Kikuchi, S. Kadjivara, and N. Shinya, “Improved shape memory properties and internal structures in Fe–Mn–Si–based alloys containing Nb and C,” J. Phys. IV France 112, 373–376 (2003).CrossRefGoogle Scholar
  11. 11.
    Z. Z. Dong, S. Kajiwara, T. Kikuchi, and T. Sawaguchi, “Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe–15Mn–9Cr–5Ni–(0.5–1.0) NbC alloys,” Acta Mater. 53, 4009–4018 (2005).CrossRefGoogle Scholar
  12. 12.
    K. A. Malyshev and M. Vasilevskaya, “Change of physical properties at annealing of martensite in iron–nickel alloys doped by titanium,” Fiz. Met. Metalloved. 18, 793–795 (1964).Google Scholar
  13. 13.
    V. V. Sagaradze and A. I. Uvarov, Hardening and Properties of Austenite Steels (Red.-Izdat. Otd. Ural. Otdel. Ross. Akad. Nauk, Ekaterinburg, 2013) [in Russian].Google Scholar
  14. 14.
    R. R. Romanova, V. G. Pushin, A. N. Uksusnikov, and N. N. Buinov, “Structural mechanism of aging of iron–manganese and iron–nickel steels hardened by vanadium carbide,” in Structure and Properties of Non-Magnetic Steels (Nauka, Moscow, 1982), pp. 107–114 [in Russian].Google Scholar
  15. 15.
    J. S. T. van Aswegen and R. W. K. Honeycombe, “Segregation and precipitation in stacking faults,” Acta. Metall. 10, 262–264 (1962).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Sagaradze
    • 1
  • S. V. Afanasiev
    • 1
  • E. G. Volkova
    • 1
  • V. A. Zavalishin
    • 1
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations