The Physics of Metals and Metallography

, Volume 116, Issue 13, pp 1285–1336 | Cite as

Magnetic circular dichroism in the hard X-ray range

Article

Abstract

An overview of X-ray magnetic circular dichroism (XMCD) spectroscopy in the hard X-ray range is presented. A short historical overview shows how this technique has evolved from the early days of X-ray physics to become a workhorse technique in the modern magnetism research As with all X-ray spectroscopies, XMCD has the advantage of being element specific. Interpretation of the spectra based on magneto-optical sum rules can provide unique information about spin and orbital moment carried by absorbing atom in both amplitude and direction, can infer magnetic interactions from element selective magnetization curves, can allow separation of magnetic and non-magnetic components in heterogeneous systems. The review details the technology currently available for XMCD measurements in the hard X-ray range referring to the ESRF beamline ID12 as an example. The strengths of hard X-ray magnetic circular dichroism technique are illustrated with a wide variety of representative examples, such as actinide based ferromagnets, paramagnetism in metals, pure metallic nanoparticles, exchange spring magnets, half metallic ferromagnets, magnetism at interfaces, and dilute magnetic semiconductors. In this way, we aim to encourage researchers from various scientific communities to consider XMCD as a tool to understanding the electronic and magnetic properties of their samples.

Keywords

X-ray spectroscopy magnetic circular dichroism magnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Materlik, “Absorption of circularly polarized X-rays in iron,” Phys. Rev. Lett. 58, 737–740 (1987).CrossRefGoogle Scholar
  2. 2.
    B. T. Thole, P. Carra, F. Sette, and G. van der Laan, “X-ray circular dichroism as a probe of orbital magnetization,” Phys. Rev. Lett. 68, 1943–1946 (1992).CrossRefGoogle Scholar
  3. 3.
    P. Carra, B. T. Thole, M. Altarelli, and X. Wang, “X-ray circular dichroism and local magnetic fields,” Phys. Rev. Lett. 70, 694–697 (1993).CrossRefGoogle Scholar
  4. 4.
    F. Wilhelm, “Magnetic materials probed with polarized X-ray spectroscopies,” Synchrotron Rad. News 26 (6), 2–5 (2013).CrossRefGoogle Scholar
  5. 5.
    J. Stöhr, “Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy,” J. Magn. Magn. Mater. 200, 470–497 (1999).CrossRefGoogle Scholar
  6. 6.
    H. Wende, “Recent advances in X-ray absorption spectroscopy,” Rep. Prog. Phys. 67, 2105–2182 (2004).CrossRefGoogle Scholar
  7. 7.
    T. Funk, A. Deb, S. J. George, H. Wang, S. P. Cramer, “X-ray magnetic circular dichroism—A high energy probe of magnetic properties,” Coord. Chem. Rev. 249, 3–30 (2005).CrossRefGoogle Scholar
  8. 8.
    T. Nakamura and M. Suzuki, “Recent progress of the X-ray magnetic circular dichroism technique for element specific magnetic analysis,” J. Phys. Soc. Jpn. 82, 021006 (2013).CrossRefGoogle Scholar
  9. 9.
    G. van der Laan and A. I. Figueroa, “X-ray magnetic circular dichroism—A versatile tool to study magnetism,” Coord. Chem. Rev. 277–278, 95–129 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Stöhr and H. C. Siegmann, Magnetism. From Fundamentals to Nanoscale Dynamics (Springer, Heidelberg, 2006).Google Scholar
  11. 11.
    A. Rogalev, F. Wilhelm, N. Jaouen, J. Goulon, and J.-P. Kappler, “X-ray magnetic circular dichroism: Historical perspective and recent highlights,” in Magnetism: A Synchrotron Radiation Approach, Lecture Notes in Physics, Vol. 697, pp. 71–93 (2006).Google Scholar
  12. 12.
    G. Schütz, E. Goering, and H. Stoll, “Synchrotron radiation techniques based on X-ray magnetic circular dichroism,” in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. Parkin (John Wiley & Sons, 2007), Vol. 3.Google Scholar
  13. 13.
    F. M. F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC Press, Boca Raton, FL, 2008).CrossRefGoogle Scholar
  14. 14.
    W. C. Röntgen, “Über eine neue Art von Strahlen,” Sitzber. Physik. Med. Ges. 137, 132–137 (1895).Google Scholar
  15. 15.
    J. J. Thomson, “The Röntgen Rays,” Nature 53, 391–392 (1896).CrossRefGoogle Scholar
  16. 16.
    B. Galitzine and A. Karnojitzky, “Recherches concernant les propriètès des rayons X,” C. R. Acad. Sci. Paris 122, 717–718 (1896).Google Scholar
  17. 17.
    R. Blondlot, “Sur la polarisation des rayons X,” C. R. Acad. Sci. Paris, 136, 284–287 (1903).Google Scholar
  18. 18.
    R. von Lieben, “Bemerkungen zur “Polarisation der Rontgenstrahlung”, Physik. Zeitschr 5, 72–74 (1904).Google Scholar
  19. 19.
    C. G. Barkla, “Polarised Röntgen radiation,” Phil. Trans A 204 (372–386), 467–479 (1905).CrossRefGoogle Scholar
  20. 20.
    J. C. Chapman, “Some experiments on polarized Röntgen radiation,” Philos. Mag. 25 (150), 792–802 (1913).CrossRefGoogle Scholar
  21. 21.
    A. H. Forman, “The effect of magnetization on the opacity of iron to Röntgen rays,” Phys. Rev. 3, 306–313 (1914).CrossRefGoogle Scholar
  22. 22.
    A. H. Forman, “The effect of magnetization on the opacity of iron to Röntgen rays,” Phys. Rev. 7, 119–124 (1916).CrossRefGoogle Scholar
  23. 23.
    A. H. Compton, “The absorption of gamma rays by magnetized iron,” Phys. Rev. 17, 38–41 (1921).CrossRefGoogle Scholar
  24. 24.
    J. A. Becker, “The effect of the magnetic field on the absorption of X-rays,” Phys. Rev. 20, 134–147 (1922).CrossRefGoogle Scholar
  25. 25.
    J. A. Becker, “The effect of a magnetic field on the absorption of X-rays,” Phys. Rev. 22, 320–323 (1923).CrossRefGoogle Scholar
  26. 26.
    W. Kartschagin and E. Tschetwerikova, “Zur Frage nach der magnetischen Drehung der polarisationsebene primärer Röntgenstrahlen,” Z. Phys. 39, 886–900 (1926).CrossRefGoogle Scholar
  27. 27.
    D. K. Froman, “The Faraday Effect with X-rays,” Phys. Rev. 41 (6), 693–700 (1932).CrossRefGoogle Scholar
  28. 28.
    J. L. Erskine and E. A. Stern, “Calculation of the M 2,3 Magneto-optical absorption spectrum of ferromagnetic nickel,” Phys. Rev. B: Solid. State 12, 5016–5024 (1975).CrossRefGoogle Scholar
  29. 29.
    H. S. Bennet and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137A, 448–461 (1965).CrossRefGoogle Scholar
  30. 30.
    J. Hrdý, E. Krouský, and O. Renner, “A search for Faraday rotation in X-ray region,” Phys. Status Solidi A 53, 143–146 (1979).CrossRefGoogle Scholar
  31. 31.
    M. Hart and A. R. D. Rodriguez, “Optical activity and the faraday effect at X-ray frequencies,” Philos. Mag. B. 43, 321–332 (1981).CrossRefGoogle Scholar
  32. 32.
    G. Schütz, E. Zech, E. Hagn, and P. Kienle, “Anisotropy of X-rays and spin dependence of the photoabsorption of circularly polarized soft X-rays in magnetized Fe,” Hyperfine Interact. 16, 1039–1042 (1983).CrossRefGoogle Scholar
  33. 33.
    E. Keller and E. A. Stern, “Magnetic XANES,” in Proc. of the EXAFS and Near Edge Structure III Conference, Ed. by K. O. Hodgson, B. Hedman, and J. E. Penner-Hahn, Springer Proc. in Phys., 1984, p. 507–508.CrossRefGoogle Scholar
  34. 34.
    B. T. Thole, G. van der Laan, and G. A. Sawatzky, “Strong Magnetic dichroism predicted in the M 4,5 X-ray absorption spectra of magnetic rare-earth materials,” Phys. Rev. Lett. 55, 2086–2088 (1985).CrossRefGoogle Scholar
  35. 35.
    G. van der Laan, B. T. Thole, G. A. Sawatzky, J. B. Goekoop, J. C. Fuggle, J.-M. Esteva, R. Karnatak, J. P. Remeika, H. A. Dabkowska, “Experimental proof of magnetic X-ray dichroism,” Phys. Rev. B: Condens. Matter 34, 6529–6531 (1986).CrossRefGoogle Scholar
  36. 36.
    S. P. Collins, M. J. Cooper, A. Brahmiat, D. Laundy, T. Pitkanen, “Magnetic near-edge structure in iron,” J. Phys.: Condens. Matter 1, 323–326 (1989).Google Scholar
  37. 37.
    G. Schutz, R. Frahm, P. Mautner, R. Wienke, W. Wagner, W. Wilhelm, P. Kienle, “Spin dependent extended X-ray absorption fine structure: Probing magnetic short-range order,” Phys. Rev. Lett. 62, 2620–2623 (1989).CrossRefGoogle Scholar
  38. 38.
    C. C. Kao, J. B. Hastings, E. D. Johnson, D. P. Siddons, G. C. Smith, G. A. Prinz, “Magnetic resonance exchange scattering at the iron L II and L III edges,” Phys. Rev. Lett. 65, 373–376 (1990).CrossRefGoogle Scholar
  39. 39.
    C. T. Chen, F. Sette, Y. Ma, and S. Modesti, “Soft X-ray magnetic circular dichroism at the L 2,3 Edges of Nickel,” Phys. Rev. B: Condens. Matter 42, 7262–7265 (1990).CrossRefGoogle Scholar
  40. 40.
    D. P. Siddons, M. Hart, Y. Amemiya, and J. B. Hastings, “X-ray optical activity and the Faraday effect in cobalt and its compounds,” Phys. Rev. Lett. 64, 1967–1970 (1990).CrossRefGoogle Scholar
  41. 41.
    M. Sacchi and A. Mirone, “Resonant reflectivity from a Ni(110) crystal: magnetic effects at the Ni 2p edges using linearly and circularly polarized photons,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 8408–8415 (1998).CrossRefGoogle Scholar
  42. 42.
    O. Hellwig, J. B. Kortright, K. Takano, and E. E. Fullerton, “Switching behavior of Fe–Pt/Ni–Fe exchange spring films studied by resonant soft X-ray magnetooptical Kerr effect,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 11694–11698 (2000).CrossRefGoogle Scholar
  43. 43.
    H.-Ch. Mertins, P. M. Oppeneer, J. Kunes, A. Gaupp, D. Abramsohn, F. Schäfers, “Observation of the X-ray magneto-optical Voigt effect,” Phys. Rev. Lett. 87, 047401 (2001).CrossRefGoogle Scholar
  44. 44.
    J. Goulon, C. Goulon-Ginet, A. Rogalev, V. Gotte, C. Malgrange, C. Brouder, C. R. Natoli, “X-ray natural circular dichroism in a uniaxial gyrotropic single crystal of LiIO3,” J. Chem. Phys. 108, 6394–6403 (1998).CrossRefGoogle Scholar
  45. 45.
    J. Goulon, A. Rogalev, C. Goulon-Ginet, G. Benayoun, L. Paolasini, C. Brouder, C. Malgrange, P. A. Metcalf, “First observation of non-reciprocal X-ray gyrotropy,” Phys. Rev. Lett. 85, 4385–4388 (2000).CrossRefGoogle Scholar
  46. 46.
    J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, P. Carra, D. Cabaret, C. Brouder, “X-ray magnetochiral dichroism: A new spectroscopic probe of parity nonconserving magnetic solids,” Phys. Rev. Lett. 88, 237401 (2002).CrossRefGoogle Scholar
  47. 47.
    R. Sessoli, M.-E. Boulon, A. Caneschi, M. Mannini, L. Poggini, F. Wilhelm, A. Rogalev, “Strong magnetochiral dichroism in a paramagnetic molecular helix observed by hard X-rays,” Nature Physics 11, 69–74 (2015).CrossRefGoogle Scholar
  48. 48.
    P. Carra, A. Jerez, and I. Marri, “X-ray dichroism in noncentrosymmetric crystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 045111 (2003).CrossRefGoogle Scholar
  49. 49.
    J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, P. Carra, I. Marri, C. Brouder, “X-ray optical activity: Application of sum rules,” J. Exp. Theor. Phys 97, 402–431 (2003).CrossRefGoogle Scholar
  50. 50.
    E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (University Press, Cambridge, 1951).Google Scholar
  51. 51.
    A. F. Starace, “Potential barrier effects in photoabsorption. 1. General theory,” Phys. Rev. B: Solid State 5, 1773–1784 (1972).CrossRefGoogle Scholar
  52. 52.
    H. Wang, P. Ge, C. G. Riordan, S. Brooker, C. G. Woomer, T. Collins, C. A. Melendres, O. Graudejus, N. Bartlett, S. P. Cramer, “Integrated X-ray L absorption spectra. Counting holes in Ni complexes,” J. Phys. Chem. B 102, 8343–8346 (1998).CrossRefGoogle Scholar
  53. 53.
    S. Brossard, F. Volatron, L. Lisnard, M.-A. Arrio, L. Catala, C. Mathoniere, T. Mallah, “ C. Cartier Dit Moulin C., Rogalev A., Wilhelm F., Smekhova A., Ph. Sainctavit, “Investigation of the photoinduced magnetization of copper octacyanomolybdates nanoparticles by X-ray magnetic circular dichroism,” J. Am. Chem. Soc. 134, 222–228 (2012).CrossRefGoogle Scholar
  54. 54.
    B. T. Thole and G. van der Laan, “Linear relation between X-ray absorption branching ratio and valence-band spin-orbit expectation value,” Phys. Rev. A 38, 1943–1947 (1988).CrossRefGoogle Scholar
  55. 55.
    G. van der Laan, K. T. Moore, J. G. Tobin, B. W. Chung, M. A. Wall, A. J. Schwartz, “Applicability of the spin-orbit sum rule for the actinide 5f states,” Phys. Rev. Lett. 93, 097401 (2004).CrossRefGoogle Scholar
  56. 56.
    K. T. Moore and G. van der Laan, “Nature of the 5f states in actinide metals,” Rev. Mod. Phys. 81, 235–298 (2009).CrossRefGoogle Scholar
  57. 57.
    F. Wilhelm, R. Eloirdi, J. Rusz, R. Springell, E. Colineau, J. C. Griveau, P. M. Oppeneer, R. Caciuffo, A. Rogalev, and G. H. Lander, “X-ray magnetic circular dichroism experiments and theory of transuranium Laves phase compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 88, 024424 (2013).CrossRefGoogle Scholar
  58. 58.
    G. Van der Laan and B. T. Thole, “X-ray-absorption sum rules in jj-coupled operators and ground-state moments of actinide ions,” Phys. Rev. B: Condens. Matter. 53, 14458–14469 (1996).CrossRefGoogle Scholar
  59. 59.
    U. Fano, “Spin orientation of photoelectrons ejected by circularly polarized light,” Phys. Rev. 178, 131–136 (1969).CrossRefGoogle Scholar
  60. 60.
    H. Ebert, J. Stohr, S. S. P. Parkin, M. Samant, A. Nilsson, “L-edge X-ray adsorption in fcc and bcc Cu metal: Comparison of experimental and first-principles theoretical results,” Phys. Rev. B: Condens. Matter. 53, 16067–16073 (1996).CrossRefGoogle Scholar
  61. 61.
    M. Altarelli, “Orbital-magnetization sum rule for X-ray circular dichroism–A simple proof,” Phys. Rev. B: Condens. Matter. 47, 597–598 (1993).CrossRefGoogle Scholar
  62. 62.
    G. van der Laan, “Sum rules and fundamental spectra of magnetic X-ray dichroism in crystal field symmetry,” J. Phys. Soc. Jpn. 63, 2393–2400 (1994).CrossRefGoogle Scholar
  63. 63.
    G. van der Laan, “Microscopic origin of magnetocrystalline anisotropy in transition metal thin films,” J. Phys.: Condens. Matter 10, 3239–3254 (1998).Google Scholar
  64. 64.
    J. Stöhr and H. König, “Determination of spinand orbital-moment anisotropies in transitionmetals by angle-dependent X-ray magnetic circular dichroism,” Phys. Rev. Lett. 75, 3748–3751 (1995).CrossRefGoogle Scholar
  65. 65.
    Ph. Sainctavit, M.-A. Arrio, and Ch. Brouder, “Analytic calculation of the spin sum rule at the L 2,3 Edges of Cu2+,” Phys. Rev. B: Condens. Matter 52, 12766–12769 (1995).CrossRefGoogle Scholar
  66. 66.
    S. P. Collins, D. Laundy, C. Tang, and G. van der Laan, “An investigation of uranium M 4,5 Edge Magnetic X-ray circular dichroism in US,” J. Phys.: Condens. Matter 7, 9325–9342 (1995).Google Scholar
  67. 67.
    N. Kernavanois and J.-X. Boucherle, P. Dalmas de Réotier, F. Givord, E. Lelièvre-Berna, E. Ressouche, A. Rogalev, J.-P. Sanchez, N. Sato, and A. Yaouanc, “Polarized neutron scattering and X-ray magnetic circular dichroism studies of the heavy-fermion superconductor UNi2Al3,” J. Phys.: Condens. Matter 12, 7857–7867 (2000).Google Scholar
  68. 68.
    D. Schmitz, C. Schmitz-Antoniak, A. Warland, M. Darbandi, S. Haldar, S. Bhandary, O. Eriksson, B. Sanyal, H. Wende, “The dipole moment of the spin density as a local indicator for phase transitions,” Sci. Rep 4, 5760 (2014).CrossRefGoogle Scholar
  69. 69.
    R. Wu, D. Wang, and A. J. Freeman, “First principles investigation of the validity and range of applicability of the X-ray magnetic circular dichroism sum rule,” Phys. Rev. Lett. 71, 3581–3584 (1993).CrossRefGoogle Scholar
  70. 70.
    A. Ankudinov and J. J. Rehr, “Sum rules for polarization-dependent X-ray absorption,” Phys. Rev. B: Condens. Matter 51, 1282–1285 (1995).CrossRefGoogle Scholar
  71. 71.
    H. Ebert, “Magneto-optical effects in transition metal systems,” Rep. Prog. Phys. 59, 1665–1736 (1996).CrossRefGoogle Scholar
  72. 72.
    V. Yu. Irkhin and M. I. Katsnelson, “Sum rules for X-ray magnetic circular dichroism spectra in strongly correlated ferromagnets,” Eur. Phys. J. B 45, 1–4 (2005).CrossRefGoogle Scholar
  73. 73.
    R. Benoist, P. Carra, and O. K. Andersen, “Band structure and atomic sum rules for X-ray dichroism,” Eur. Phys. J. B 18, 193–196 (2000).CrossRefGoogle Scholar
  74. 74.
    X. Wang, T. C. Leung, B. N. Harmon, and P. Carra, “Circular magnetic X-ray dichroism in the heavy rareearth metals,” Phys. Rev. B: Condens. Matter 47, 9087–9090 (1993).CrossRefGoogle Scholar
  75. 75.
    A. Ankudinov, J. J. Rehr, H. Wende, A. Scherz, and K. Baberschke, “Spin-dependent sum rules for X-ray absorption spectra,” Europhys. Lett. 66, 441–447 (2004).CrossRefGoogle Scholar
  76. 76.
    P. Carra, H. Konig, B. T. Thole, and M. Altarelli, “Magnetic X-ray dichroism—General features of dipolar and quadrupolar spectra,” Physica A 192, 182–190.Google Scholar
  77. 77.
    A. Scherz, H. Wende, K. Baberschke, J. Minar, D. Benea, and H. Ebert, “Relation between L 2,3 XMCD and the magnetic ground-state properties for the early 3d element V,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 184401 (2002).CrossRefGoogle Scholar
  78. 78.
    K. W. Edmonds, N. R. S. Farley, T. K. Johal, G. van der Laan, R. P. Campion, B. L. Gallagher, and C. T. Foxon, “Ferromagnetic moment and antiferromagnetic coupling in (Ga:Mn)As thin films,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 064418 (2005).CrossRefGoogle Scholar
  79. 79.
    J. Vogel, A. Fontaine, V. Cros, F. Petroff, J.-P. Kappler, G. Krill, A. Rogalev, and J. Goulon, “Structure and magnetism of Pd in Pd/Fe multilayers studied by X-ray magnetic circular dichroism at the Pd L 2,3 Edges,” Phys. Rev. B: Condens. Matter 55, 3663–3669 (1997).CrossRefGoogle Scholar
  80. 80.
    F. Wilhelm, P. Poulopoulos, G. Ceballos, H. Wende, K. Baberschke, P. Srivastava, D. Benea, H. Ebert, M. Angelakeris, N. K. Flevaris, D. Niarchos, A. Rogalev, and N. B. Brookes, “Layer-resolved magnetic moments in Ni/Pt multilayers,” Phys. Rev. Lett. 85, 413–416 (2000).CrossRefGoogle Scholar
  81. 81.
    M. A. Laguna-Marco, D. Haskel, N. Souza-Neto, J. Lang, V. Krishnamurthy, S. Chikara, Cao. Gang, M. van Veenendaal, “Orbital magnetism and spinorbit effects in the electronic structure of BaIrO3,” Phys. Rev. Lett. 105, 216407 (2010).CrossRefGoogle Scholar
  82. 82.
    A. Rogalev, J. Goulon, C. Goulon-Ginet, and C. Malgrange, “Instrumentation developments for polarization dependent X-ray Spectroscopies at the ESRF beamline ID12A,” Springer Lecture Notes in Physics 565, 60–86 (2001).CrossRefGoogle Scholar
  83. 83.
    M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, 1987).Google Scholar
  84. 84.
    P. Elleaume, “Helios: a new type of linear/helical undulator,” J. Synchrotron Rad. 1, 19–26 (1994).CrossRefGoogle Scholar
  85. 85.
    S. Sasaki, K. Kabuno, T. Takada, T. Shimada, K. Yanagida, Y. Miyahara, “Design of a new type of planar undulator for generating variably polarized radiation,” Nucl. Inst. Meth. A 331, 763–767 (1993).CrossRefGoogle Scholar
  86. 86.
    A. Rogalev, J. Goulon, G. Benayoun, P. Elleaume, J. Chavanne, Ch. Penel, and P. van Vaerenbergh, “Hybrid electromagnet/permanent magnet helical undulator: First results,” SPIE Proc. 3773, 275–283 (1999).CrossRefGoogle Scholar
  87. 87.
    K. Tsuchiya, T. Shioya, T. Aoto, K. Harada, T. Obina, M. Sakamaki, and K. Amemiya, “Operation of a fast polarization-switching source at the photon factory,” J. Phys.: Conf. Ser 425, 132017 (2013).Google Scholar
  88. 88.
    J. Goulon, N. B. Brookes, C. Gauthier, J. Goedkoop, C. Goulon-Ginet, M. Hagelstein, and A. Rogalev, “Instrumentation Development for ESRF Beamlines,” Physica A 208–209, 199–202 (1995).CrossRefGoogle Scholar
  89. 89.
    V. A. Belyakov and V. E. Dmitrienko, “Polarization phenomena in X-ray optics,” Sov. Phys. Uspekhi 32, 697–719 (1989).CrossRefGoogle Scholar
  90. 90.
    C. G. Giles, C. Malgrange, J. Goulon, F. de Bergevin, C. Vettier, E. Dartyge, A. Fontain, C. Giorgetti, S. Pizzini, “Energy-dispersive phase plate for magnetic circular dichroism experiments in the X-ray range,” J. Appl. Crystallogr. 27, 232–240 (1994).CrossRefGoogle Scholar
  91. 91.
    K. Hirano and H. Maruyama, “Application of an X-ray transmission phase plate to measurements of X-ray Magnetic Circular Dichroism,” Jpn. J. Appl. Phys., L1272–L1274 (1997).Google Scholar
  92. 92.
    M. Suzuki, N. Kawamura, M. Mizumaki, A. Urata, H. Maruyama, S. Goto, T. Ishikawa, “Helicity-Modulation Technique Using Diffractive Phase Retarder for Measurements of X-ray Magnetic Circular Dichroism,” Jpn. J. Appl. Phys. 37, L1488–L1490 (1998).CrossRefGoogle Scholar
  93. 93.
    D. Haskel, Y. C. Tseng, J. C. Lang, and S. Sinogeikin, “Instrument for X-ray magnetic circular dichroism measurements at high pressures,” Rev. Sci. Instrum. 78, 083904 (2007).CrossRefGoogle Scholar
  94. 94.
    L. Bouchenoire, S. D. Brown, P. Thompson, M. G. Cain, M. Stewart, and M. J. Cooper, “Development of a novel piezo driven device for fast helicity reversal experiments on the XMaS Beamline,” AIP Conf. Proc. 879, 1679–1682 (2007).CrossRefGoogle Scholar
  95. 95.
    C. Malgrange, C. Carvalho, L. Braicovich, and J. Goulon, “Transfer of circular polarization in Bragg crystal X-ray monochromators,” Nucl. Instrum. Methods A 308, 390–396 (1991).CrossRefGoogle Scholar
  96. 96.
    T. Ichikawa, “X-ray monochromators for circularly polarized incident radiation,” Rev. Sci. Instrum. 60, 2058–2061 (1989).CrossRefGoogle Scholar
  97. 97.
    B. K. Vainshtein, Modern Crystallography (Nauka, Moscow, 1981; Springer, Berlin, 1988).Google Scholar
  98. 98.
    V. E. Dmitrienko and V. A. Belyakov, “On the polarization of X-rays diffracted in mosaic crystals,” Acta Cristallogr. A 36, 1044–1050 (1980).CrossRefGoogle Scholar
  99. 99.
    V. E. Dmitrienko and V. A. Belyakov, “Polarisation conversion of X-rays in single crystals,” Sov. Tech. Phys. Lett 6, 621–622 (1980).Google Scholar
  100. 100.
    J. Goulon, C. Malgrange, C. Giles, C. Neumann, A. Rogalev, E. Moguiline, F. de Bergevin, and C. Vettier, “Design of an X-ray phase plate analyzer to measure the circular polarization rate of a helical undulator source,” J. Synchrotron Rad 3, 272–281 (1996).CrossRefGoogle Scholar
  101. 101.
    L. Bouchenoire, R. J. H. Morris, and Th. P. A. Hase, “A Silicon 111 phase retarder for producing circularly polarized X-rays in the 2.1-3 keV energy Range,” Appl. Phys. Lett. 101, 064107 (2012).CrossRefGoogle Scholar
  102. 102.
    G. Schmahl and D. Rudolph, “Lichtstarke Zonenplatten Als Abbildende Systeme Fur Weiche Rontgenstrahlen,” Optik 29, 577–585 (1969).Google Scholar
  103. 103.
    A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384 (6604), 49–51 (1996).CrossRefGoogle Scholar
  104. 104.
    R. Signorato, J. Goulon, A. Rogalev, C. GoulonGinet, and J. J. Ferme, “Vertically focusing reflective optics using two bendable CVD SiC mirrors,” SPIE Proc. 2856, 343–354 (1996).CrossRefGoogle Scholar
  105. 105.
    C. T. Chen, Y. U. Idzerda, H. J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. Ho, E. Pellegrin, and F. Sette, “Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt,” Phys. Rev. Lett. 75, 152–155 (1995).CrossRefGoogle Scholar
  106. 106.
    J. Goulon, C. Goulon-Ginet, R. Cortes, and J. M. Dubois, “On experimental attenuation factors of the amplitude of the EXAFS oscillations in absorption, reflectivity and luminescence measurements,” J. Phys. Fr. 43, 539–548 (1982).CrossRefGoogle Scholar
  107. 107.
    D. Haskel, Y. C. Tseng, J. C. Lang, and S. Sinogeikin, “Instrument for X-ray magnetic circular dichroism measurements at high pressures,” Rev. Sci. Intrum 78, 083904 (2007).CrossRefGoogle Scholar
  108. 108.
    N. Kawamura, N. Ishimatsu, and H. Maruyama, “X-ray magnetic spectroscopy at high pressure: performance of SPring-8 BL39XU,” J. Synchrotron Rad 16, 730–736 (2009).CrossRefGoogle Scholar
  109. 109.
    F. Baudelet, Q. Kong, L. Nataf, J. D. Cafun, A. Congeduti, A. Monza, S. Chagnot, and J. P. Itie, “ODE: a new beam line for high pressure XAS and XMCD studies at SOLEIL,” High Pressure Res. 31, 136High Pressure Research139 (2011).Google Scholar
  110. 110.
    R. Torchio, O. Mathon, and S. Pascarelli, “XAS and XMCD spectroscopies to study matter at high pressure: Probing the correlation between structure and magnetism in the 3d metals,” Coord. Chem. Rev. 277–278, 80–94 (2014).CrossRefGoogle Scholar
  111. 111.
    W. Gudat and C. Kunz, “Close similarity between photoelectric yield and photoabsorption spectra in the soft-X-ray range,” Phys. Rev. Lett. 29, 169–172 (1972).CrossRefGoogle Scholar
  112. 112.
    R. Nakajima, J. Stohr, and Y. U. Idzerda, “Electronyield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co and Ni,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 6421–6429 (1999).CrossRefGoogle Scholar
  113. 113.
    P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser, and C. Carbone, “Localized magnetic states of Fe, Co and Ni impurities on alkali metal films,” Phys. Rev. Lett. 88, 047202 (2002).CrossRefGoogle Scholar
  114. 114.
    F. M. F. de Groot, M.-A. Arrio, P. Sainctavit, Ch. Cartier, C. T. Chen, “Fluorescence yield detection: Why it does not measure the X-ray absorption cross-section,” Solid State Commun. 92, 991–995 (1994).CrossRefGoogle Scholar
  115. 115.
    C. F. Hague, J.-M. Mariot, G. Y. Guo, K. Hricovini, and G. Krill, “Coster-Kronig contributions to magnetic circular dichroism in the L 2,3 X-ray fluorescence of iron,” Phys. Rev. B: Condens. Matter 51, 1370–1373 (1995).CrossRefGoogle Scholar
  116. 116.
    M. Pompa, A. M. Flank, P. Lagarde, J. C. Rife, I. Stekhin, M. Nakazawa, H. Ogasawara, and A. Kotani, “Experimental and theoretical comparison between absorption, total electron yield, and fluorescence spectra of rare-earth M 5 Edges,” Phys. Rev. B: Condens. Matter 56, 2267–2272 (1997).CrossRefGoogle Scholar
  117. 117.
    M. van Veenendaal, J. B. Goedkoop, and B. T. Thole, “Polarized X-ray fluorescence as a probe of ground state properties,” Phys. Rev. Lett. 77, 1508–1511 (1996).CrossRefGoogle Scholar
  118. 118.
    L. Troger, D. Arvanitis, K. Baberschke, H. Michaelis, U. Grimm, E. Zschech, “Full correction of the self absorption in soft fluorescence X-ray absorption fine structure,” Phys. Rev. B: Condens. Matter 46, 3283–3289 (1992).CrossRefGoogle Scholar
  119. 119.
    P. Pfalzer, J.-P. Urbach, M. Klemm, S. Horn, A. I. Frenkel, and J. P. Kirkland, “Elimination of selfabsorption in fluorescence hard-X-ray absorption spectra,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 9335–9339 (1999).CrossRefGoogle Scholar
  120. 120.
    F. Wilhelm, N. Jaouen, A. Rogalev, W. G. Stirling, R. Springell, S. W. Zochowski, A. M. Beesley, S. D. Brown, M. F. Thomas, G. H. Lander, S. Langridge, R. C. C. Ward, and M. R. Wells, “X-ray magnetic circular dichroism study of uranium/iron multilayers,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 024425 (2007).CrossRefGoogle Scholar
  121. 121.
    K. Dumesnil, C. Dufour, P. Mangin, and A. Rogalev, “Magnetic springs in exchange-coupled DyFe2/YFe2 Superlattices: An element-selective X-ray magnetic circular dichroism study,” Phys. Rev. B: Condens. Matter Mater. Phys. 65, 094401 (2002).CrossRefGoogle Scholar
  122. 122.
    J. Goulon, A. Rogalev, F. Wilhelm, C. Goulon-Ginet, and G. Goujon, “Element-selective X-ray detected magnetic resonance: A novel application of synchrotron radiation,” J. Synchrotron Rad. 14, 257–271 (2007).CrossRefGoogle Scholar
  123. 123.
    E. Arenholz and S. O. Prestemon, “Design and performance of an eight pole resistive magnet for soft X-ray magnetic dichroism measurements,” Rev. Sci. Instrum. 76, 083908 (2005).CrossRefGoogle Scholar
  124. 124.
    G. van der Laan, R. V. Chopdekar, Y. Suzuki, and E. Arenholz, “Strain-induced changes in the electronic structure of MnCr2O4 thin films probed by X-ray magnetic circular dichroism,” Phys. Rev. Lett. 105, 067405 (2010).CrossRefGoogle Scholar
  125. 125.
    J. Goulon, A. Rogalev, G. Goujon, C. Gauthier, E. Moguiline, A. Sole, S. Feite, F. Wilhelm, N. Jaouen, C. Goulon-Ginet, P. Dressler, P. Rohr, M.-O. Lampert, and R. Henck, “Advanced detection systems for X-ray fluorescence excitation spectroscopy,” J. Synchrotron Rad. 12, 57–69 (2005).CrossRefGoogle Scholar
  126. 126.
    O. Mathon, P. van der Linden, T. Neisius, M. Sikora, J. M. Michalik, C. Ponchut, J. M. De Teresa, and S. Pascarelli, “XAS and XMCD under high magnetic field and low temperature on the energy-dispersive beamline of the ESRF,” J. Synchrotron Rad. 14, 409–415 (2007).CrossRefGoogle Scholar
  127. 127.
    Y. H. Matsuda, Z. W. Ouyang, H. Nojiri, T. Inami, K. Ohwada, M. Suzuki, N. Kawamura, A. Mitsuda, and H. Wada, “X-ray magnetic circular dichroism of a valence fluctuating state in Eu at high magnetic fields,” Phys. Rev. Lett. 103, 046402 (2009).CrossRefGoogle Scholar
  128. 128.
    A. Rogalev and F. Wilhelm, “X-ray magnetic circular dichroism under high magnetic field,” Synchrotron Rad. News 26 (6), 33–36 (2013).CrossRefGoogle Scholar
  129. 129.
    S. M. Ramos, E. N. Hering, G. Lapertot, F. Wilhelm, A. Rogalev, F. Baudelet, and D. Braithwaite, “XMCD measurements under pressure confirm ferromagnetism in YbCu2Si2 but find none in YbRh2Si2,” J. Phys.: Conf. Ser 592, 012015 (2015).Google Scholar
  130. 130.
    W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, and G. Christou, “Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets,” Nature 416 (6879), 406–409 (2002).CrossRefGoogle Scholar
  131. 131.
    I. Letard and Ph. Sainctavit, Ch. Cartier, J.-P. Kappler J.-P., P. Ghigna, D. Gatteschi, and B. Doddi, “Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 mK,” J. Appl. Phys. 101, 113920 (2007).CrossRefGoogle Scholar
  132. 132.
    M. Brown, R. E. Peierls, and E. A. Stern, “White Lines in X-ray Absorption,” Phys. Rev. B: Solid State 15, 738–744 (1977).CrossRefGoogle Scholar
  133. 133.
    L. F. Mattheiss and R. E. Dietz, “Relativistic tightbinding calculation of core-valence transitions in Pt and Au,” Phys. Rev. B: Condens. Matter 22, 1663–1676 (1980).CrossRefGoogle Scholar
  134. 134.
    J. Bartolome, F. Bartolome, L. M. Garcia, E. Roduner, Y. Akdogan, F. Wilhelm, and A. Rogalev, “Magnetization of Pt13 clusters supported in a NaY zeolite: A XANES and XMCD study,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 014404 (2009).CrossRefGoogle Scholar
  135. 135.
    A. Rogalev, J. Goulon, F. Wilhelm, Ch. Brouder, A. Yaresko, J. Ben Youssef, and M. V. Indenbom, “Element selective X-ray magnetic circular and linear dichroisms in ferrimagnetic yttrium iron garnet films,” J. Magn. Magn. Mater. 321, 3945–3962 (2009).CrossRefGoogle Scholar
  136. 136.
    P. Strange, “Magnetic absorption and sumrules in itinerant magnets,” J. Phys.: Condens. Matter 6, L491–L495 (1994).Google Scholar
  137. 137.
    G. Y. Guo, “What does the K-edge X-ray magnetic circular dichroism spectrum tell us?,” J. Phys.: Condens. Matter 8, L747–L752 (1996).Google Scholar
  138. 138.
    H. Ebert, V. Popescu, and D. Ahlers, “Fully relativistic theory for magnetic exafs: Formalism and applications,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 7156–7165 (1999).CrossRefGoogle Scholar
  139. 139.
    P. Bruno, “Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers,” Phys. Rev. B: Condens. Matter 39, 865–868 (1989).CrossRefGoogle Scholar
  140. 140.
    N. Nagaosa, J. Sinova, and S. Onoda, A. H. MacDonald, N. P. Ong, “Anomalous Hall effect,” Rev. Mod. Phys. 82, 1539–1592 (2010).CrossRefGoogle Scholar
  141. 141.
    I. M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, “Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer,” Nat. Mater. 9, 230–234 (2010).Google Scholar
  142. 142.
    S. W. Cheong and M. Mostovoy, “Multiferroics: A magnetic twist for ferroelectricity,” Nat. Mater. 6, 13–20 (2007).CrossRefGoogle Scholar
  143. 143.
    M. Z. Hasan and C. L. Kane, “Colloquium: Topological INSULATORS,” Rev. Mod. Phys. 82, 3045–3067 (2010).CrossRefGoogle Scholar
  144. 144.
    K. Moore and G. van der Laan, “Nature of the 5f States in actinide metals,” Rev. Mod. Phys. 81, 235–298 (2009).CrossRefGoogle Scholar
  145. 145.
    P. Santini, S. Carretta, G. Amoretti, R. Caciuffo, N. Magnani, and G. H. Lander, “Multipolar interactions in f-electron systems: The paradigm of actinide dioxides,” Rev. Mod. Phys. 81, 807–863 (2009).CrossRefGoogle Scholar
  146. 146.
    N. J. Curro, T. Caldwell, E. D. Bauer, L. A. Morales, M. J. Graf, Y. Bang, A. V. Balatsky, J. D. Thompson, and J. L. Sarrao, “Unconventional superconductivity in PuCoGa5,” Nature 434 (7033), 622–625 (2005).CrossRefGoogle Scholar
  147. 147.
    J. A. Mydosh and P. M. Oppeneer, “Colloquium: Hidden Order, superconductivity, and magnetism: The unsolved case of URu2Si2,” Rev. Mod. Phys. 83, 1301–1322 (2011).CrossRefGoogle Scholar
  148. 148.
    G. H. Lander, “Spin and orbital magnetic moments in actinide compounds,” Phys. Scr. 44(1), 33–37 (1991).CrossRefGoogle Scholar
  149. 149.
    M. Finazzi, Ph. Sainctavit, A.-M. Dias, J.-P. Kappler, G. Krill, J.-P. Sanchez, P. Dalmas de Reotier, A. Yaouanc, A. Rogalev, and J. Goulon, “X-ray magnetic circular dichroism at the U M 4,5 absorption edges of UFe2,” Phys. Rev. B: Condens. Matter 55, 3010–3014 (1997).CrossRefGoogle Scholar
  150. 150.
    N. Magnani, R. Caciuffo, F. Wilhelm, E. Colineau, R. Eloirdi, J.-C. Griveau, J. Rusz, P. M. Oppeneer, A. Rogalev, and G. H. Lander, “Magnetic polarization of the americium J = 0 ground state in AmFe2,” Phys. Rev. Lett. 114, 097203 (2015).CrossRefGoogle Scholar
  151. 151.
    M. Kučera, J. Kuneš, A. Kolomiets, M. Diviš, A. V. Andreev, V. Sechovsky, J. P. Kappler, and A. Rogalev, “X-ray magnetic circular dichroism studies of 5f magnetism in UCoAl and UPtAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 144405 (2002).CrossRefGoogle Scholar
  152. 152.
    T. Okane, T. Ohkochi, T. Inami, Y. Takeda, S.-I. Fujimori, N. Kawamura, M. Suzuki, S. Tsutsui, H. Yamagami, A. Fujimori, A. Tanaka, D. Aoki, Y. Homma, Y. Shiokawa, E. Yamamoto, Y. Haga, A. Nakamura, and Y. Onuki, “Element and orbital-specific observation of two-step magnetic transition in NpNiGa5: X-ray magnetic circular dichroism study,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 104419 (2009).CrossRefGoogle Scholar
  153. 153.
    A. Hen, E. Colineau, R. Eloirdi, J.-C. Griveau, N. Magnani, F. Wilhelm, A. Rogalev, J.-P. Sanchez, A. B. Shick, I. Halevy, I. Orion, R. Caciuffo, “LowTemperature Magnetic Properties of NpNi5,” Phys. Rev. B: Condens. Matter Mater. Phys. 90, 054408 (2014).CrossRefGoogle Scholar
  154. 154.
    G. H. Lander, A. T. Aldred, B. D. Dunlap, and G. K. Shenoy, “Magnetic properties of the AnFe2 compounds (An = U, Np, Pu, and Am), Physica B + C 86–88, 152–154 (1977).Google Scholar
  155. 155.
    B. Lebech, M. Wulff, G. H. Lander, J. Rebizant, J. C. Spirlet, and A. Delapalme, “Neutron diffraction studies of the crystalline and magnetic properties of UFe2,” J. Phys.: Condens. Matter 1, 10229–10248 (1989).Google Scholar
  156. 156.
    M. Wulff, G. H. Lander, J. Rebizant, J. C. Spirlet, B. Lebech, C. Broholm, and P. J. Brown, “Magnetic moments and Pu form factor in PuFe2,” Phys. Rev. B: Condens. Matter 37, 5577–5585 (1988).CrossRefGoogle Scholar
  157. 157.
    A. V. Andreev, A. V. Deryagin, R. Z. Levitin, A. S. Markosyan, and M. Zelený, “Magnetic anisotropy of the intermetallic compound UFe2,” Phys. Status Solidi A 52, K13–K15 (1979).CrossRefGoogle Scholar
  158. 158.
    M. Wulff, G. H. Lander, B. Lebech, and A. Delapalme, “Cancellation of Orbital and Spin Magnetism in UFe2,” Phys. Rev. B: Condens. Matter 39, 4719–4721 (1989).CrossRefGoogle Scholar
  159. 159.
    W. T. Carnall, “A Systematic analysis of the spectra of trivalent actinide chlorides in D 3h site symmetry,” J. Chem. Phys. 96, 8713–8726 (1992).CrossRefGoogle Scholar
  160. 160.
    P. D. de Reotier, J.-P. Sanchez, A. Yaouanc, M. Finazzi, Ph. Sainctavit, G. Krill, J.-P. Kappler, J. Goedkoop, J. Goulon, C. Goulon-Ginet, A. Rogalev, and O. Vogt, “Investigation of uranium M IV,V edges in USb0.5Te0.5 by X-ray magnetic circular dichroism,” J. Phys.: Condens. Matter 9, 3291–3296 (1997).Google Scholar
  161. 161.
    C. Sorg, A. Scherz, K. Baberschke, H. Wende, F. Wilhelm, A. Rogalev, S. Chadov, J. Minár, and H. Ebert, “Detailed fine structure of X-ray magnetic circular dichroism spectra: Systematics for heavy rare-earth magnets,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 064428 (2007).CrossRefGoogle Scholar
  162. 162.
    G. Schütz, M. Knulle, R. Wienke, W. Wilhelm, W. Wagner, P. Kienle, and R. Frahm, “Spin-dependent photoabsorption at the L-edges of ferromagnetic Gd and Tb metal,” Z. Phys. B: Condens. Matter 73, 67–75 (1988).CrossRefGoogle Scholar
  163. 163.
    P. Carra and M. Altarelli, “Dichroism in the X-ray absorption spectra of magnetically ordered systems,” Phys. Rev. Lett. 64, 1286–1288 (1990).CrossRefGoogle Scholar
  164. 164.
    H. Ebert, G. Schütz, and W. M. Temmerman, “Theoretical study of the magnetic X-ray dichroism of hcpGd,” Solid State Commun. 76, 475–478 (1990).CrossRefGoogle Scholar
  165. 165.
    Ch. Giorgetti, E. Dartyge, Ch. Brouder, F. Baudelet, C. Meyer, S. Pizzini, A. Fontaine, and R.-M. Galera, “Quadrupolar effect in X-ray magnetic circular dichroism,” Phys. Rev. Lett. 75, 3186–3189 (1995).CrossRefGoogle Scholar
  166. 166.
    A. L. Ankudinov, J. J. Rehr, H. Wende, A. Scherz, and K. Baberschke, “Spin-dependent sum rules for X-ray absorption spectra,” Europhys. Lett. 66, 441–447 (2004).CrossRefGoogle Scholar
  167. 167.
    A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung, “Parallel calculation of electron multiple scattering using Lanczos algorithms,” Phys. Rev. B: Condens. Matter Mater. Phys. 65, 104107 (2002).CrossRefGoogle Scholar
  168. 168.
    J. Van Elp, S. J. George, J. Chen, G. Peng, C. T. Chen, L. H. Tjeng, G. Maigs, H. J. Lin, Z. H. Zhou, M. W. W. Adams, B. G. Searle, and S. P. Cramer, “Soft X-ray magnetic circular dichroism: A probe for studying paramagnetic bioinorganic systems,” Proc. Natl. Acad. Sci. USA 90, 9664–9667 (1993).CrossRefGoogle Scholar
  169. 169.
    J. Ph. Schille, Ph. Sainctavit, Ch. Cartier, D. Lefebvre, C. Brouder, J. P. Kappler, and G. Krill, “Magnetic circular X-ray dichroism at high magnetic field and low temperature in ferrimagnetic HoCo2 and Paramagnetic Ho2O3,” Solid State Commun. 85, 787–791 (1993).CrossRefGoogle Scholar
  170. 170.
    P. D. de Reotier, A. Yaouanc, G. van der Laan, N. Kernavanois, J.-P. Sanchez, J. L. Smith, A. Hiess, A. Huxley, and A. Rogalev, “Probing the magnetic 5f density of states above the Fermi level in metallic uranium compounds by X-ray magnetic circular dichroism,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 10606–10609 (1999).CrossRefGoogle Scholar
  171. 171.
    C. Neumann, B. W. Hoogenboom, A. Rogalev, and J. B. Goedkoop, “Crystal field effects in the L 2,3 XMCD of rare earth insulators,” Solid State Commun. 110, 375–379 (1999).CrossRefGoogle Scholar
  172. 172.
    B. J. Ruck, H. J. Trodahl, J. H. Richter, J. C. Cezar, F. Wilhelm, A. Rogalev, and V. N. Antonov, “Binh Do Le, and C. Meyer, "Magnetic state of EuN: X-ray magnetic circular dichroism at the Eu M 4,5 and L 2,3 absorption edges,” Phys. Rev. B: Condens. Matter Mater. Phys. 83, 174404 (2011).CrossRefGoogle Scholar
  173. 173.
    M. Suzuki, N. Kawamura, H. Miyagawa, J. S. Garitaonandia, Y. Yamamoto, and H. Hori, “Measurement of a Pauli and orbital paramagnetic state in bulk gold using X-ray magnetic circular dichroism spectroscopy,” Phys. Rev. Lett. 108, 047201 (2012).CrossRefGoogle Scholar
  174. 174.
    R. M. White, Quantum Theory of Magnetism (McGraw-Hill, New York, 1970; Springer, Berlin, 1983; Mir, Moscow, 1985).Google Scholar
  175. 175.
    R. Kubo and Y. Obata, “Note on the paramagnetic susceptibility and the gyromagnetic ratio in metals,” J. Phys. Soc. Jpn. 11, 547–550 (1956).CrossRefGoogle Scholar
  176. 176.
    J. A. Seitchik, A. C. Gossard, and V. Jaccarino, Knight shifts and susceptibilities of transition metals: palladium. Phys. Rev 136, A1119–A1125 (1964).Google Scholar
  177. 177.
    H. Ebert and S. Man’kovsky, “Field-induced magnetic circular X-ray dichroism in paramagnetic solids: A new magneto-optical effect,” Phys. Rev. Lett. 90, 077404 (2003).CrossRefGoogle Scholar
  178. 178.
    K. Adachi, D. Bonnenberg, J. J. M. Franse, R. Gersdorf, K. A. Hempel, K. Kanematsu, S. Misawa, M. Shiga, M. B. Stearns, H. P. J. Wijn, Landolt-Börnstein, New series. Magnetic Properties of Metals: 3d, 4d, and 5d Elements, Alloys, and Compounds, Ed. by H. P. J. Wijn, Vol. III/19a (Springer, Berlin, 1986).Google Scholar
  179. 179.
    P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W. Eberhardt, K. Kern, and C. Carbone, “Ferromagnetism in one-dimensional monatomic metal chains,” Nature 416 (6878), 301–304 (2002).CrossRefGoogle Scholar
  180. 180.
    P. Gambardella, S. S. Dhesi, S. Gardonio, C. Grazioli, P. Ohresser, and C. Carbone, “Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films,” Phys. Rev. Lett. 88, 047202 (2002).CrossRefGoogle Scholar
  181. 181.
    L. Néel, “Influence des fluctuations thermiques sur l’aimantation de grains ferromagnetique tres fins,” C. R. Acad. Sci. (Serie B, Paris), 228, 664–666 (1949).Google Scholar
  182. 182.
    F. E. Hoare and J. C. Walling, “An absolute measurement of the susceptibility of tantalum and other metals,” Proc. Phys. Soc. B 64, 337–341 (1951).CrossRefGoogle Scholar
  183. 183.
    J. P. Bucher, D. C. Douglas, and L. A. Bloomfield, “Magnetic properties of free cobalt clusters,” Phys. Rev. Lett. 66, 3052–3055 (1991).CrossRefGoogle Scholar
  184. 184.
    I. M. L. Billas, J. A. Becker, A. Châtelain, and W. A. de Heer, “Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature,” Phys.Rev. Lett. 71, 4067–4070 (1993).CrossRefGoogle Scholar
  185. 185.
    A. J. Cox, J. G. Louderback, and L. A. Bloomfield, “Experimental observation of magnetism in rhodium clusters,” Phys.Rev. Lett, 923–926 (1993).Google Scholar
  186. 186.
    A. J. Cox, J. G. Louderback, S. E. Apsel, and L. A. Bloomfield, “Magnetism in 4d-transition metal clusters,” Phys. Rev. B: Condens. Matter 49, 12295–12298 (1994).CrossRefGoogle Scholar
  187. 187.
    C. M. Chang and M. Y. Chou, “Alternative low-symmetry structure for 13-atom metal clusters,” Phys. Rev. Lett. 93, 133401 (2004).CrossRefGoogle Scholar
  188. 188.
    X. Xu, S. Yin, R. Moro, A. Liang, J. Bowlan, and W. A. de Heer, “Metastability of free cobalt and iron clusters: A possible precursor to bulk ferromagnetism,” Phys. Rev. Lett. 107, 057203 (2011).CrossRefGoogle Scholar
  189. 189.
    A. Perez, P. Mélinon, V. Dupuis, B. Prével, L. Bardotti, J. Tuaillon-Combes, B. Masenelli, M. Treilleux, M. Pellarin, J. Lermé, E. Cottancin, M. Broyer, M. Jamet, M. Négrier, F. Tournus, and M. Gaudry, “Nanostructured materials from clusters: Synthesis and properties,” Mater. Trans 42, 1460–1470 (2001).CrossRefGoogle Scholar
  190. 190.
    V. M. T. S. Barthem, A. Rogalev, F. Wilhelm, M. M. Sant’Anna, S. L. A. Mello, Y. Zhang, P. BayleGuillemaud, and D. Givord, “Spin fluctuations of paramagnetic Rh clusters revealed by X-ray magnetic circular dichroism,” Phys. Rev. Lett. 109, 197204 (2012).CrossRefGoogle Scholar
  191. 191.
    K. K. Murata and S. Doniach, “Theory of magnetic fluctuations in itinerant ferromagnets,” Phys. Rev. Lett. 29, 285–288 (1972).CrossRefGoogle Scholar
  192. 192.
    T. Moriya and A. Kawabata, “Effect of spin fluctuations on itinerant electron ferromagnetism,” J. Phys. Soc. Jpn. 34, 639–651 (1973).CrossRefGoogle Scholar
  193. 193.
    H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, and S. Yamada, “Anomalous magnetic polarization effect of Pd and Au nano-particles,” Phys. Lett. A 263, 406–410 (1999).CrossRefGoogle Scholar
  194. 194.
    I. Carmeli, G. Leitus, R. Naaman, S. Reich, Z. Vager, “Magnetism induced by the organization of selfassembled monolayers,” J. Chem. Phys 118, 10372–10375 (2003).CrossRefGoogle Scholar
  195. 195.
    P. Zhang and T. K. Sham, “X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects,” Phys. Rev. Lett. 90, 245502 (2003).CrossRefGoogle Scholar
  196. 196.
    P. Crespo, R. Litrán, T. C. Rojas, M. Multigner, J. M. de la Fuente, J. C. Sánchez-López, M. A. Garcia, A. Hernando, S. Penadés, and A. Fernández, “Permanent magnetism, magnetic anisotropy, and hysteresis of thiol-capped gold nanoparticles,” Phys. Rev. Lett. 93, 087204 (2004).CrossRefGoogle Scholar
  197. 197.
    J. S. Garitaonandia, M. Insausti, E. Goikolea, M. Suzuki, J. D. Cashion, N. Kawamura, H. Ohsawa, I. Gil de Muro, K. Suzuki, F. Plazaola, T. Rojo, “Chemically induced permanent magnetism in Au, Ag, and Cu nanoparticles: Localization of the magnetism by element selective techniques,” Nano Lett. 8, 661–667 (2008).CrossRefGoogle Scholar
  198. 198.
    R. Gréget, G. L. Nealon, B. Vileno, Ph. Turek, Ch. Mény, F. Ott, A. Derory, E. Voirin, E. Rivière, A. Rogalev, F. Wilhelm, L. Joly, W. Knafo, G. Ballon, E. Terazzi, J.-P. Kappler, B. Donnio, and J.- L. Gallani, “Magnetic properties of gold nanoparticles: A room-temperature quantum effect,” ChemPhysChem 13, 3092–3097 (2012).CrossRefGoogle Scholar
  199. 199.
    E. Guerrero, M. A. Munoz-Marquez, M. A. García, P. Crespo, E. Fernandez-Pinel, A. Hernando, and A. Fernandez, “Surface plasmon resonance and magnetism of thiol-capped gold nanoparticles,” Nanotecnology 19, 175701 (2008).CrossRefGoogle Scholar
  200. 200.
    Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, “Direct observation of ferromagnetic spin polarization in gold nanoparticles,” Phys. Rev. Lett. 93, 116801 (2004).CrossRefGoogle Scholar
  201. 201.
    J. Bartolomé, F. Bartolomé, L. M. García, A. I. Figueroa, A. Repollés, M. J. Martínez-Pérez, F. Luis, C. Magén, S. Selenska-Pobell, F. Pobell, T. Reitz, R. Schönemann, T. Herrmannsdörfer, M. Merroun, A. Geissler, F. Wilhelm, and A. Rogalev, “Strong paramagnetism of gold nanoparticles deposited on a Sulfolobus acidocaldarius S layer,” Phys. Rev. Lett. 109, 247203 (2012).CrossRefGoogle Scholar
  202. 202.
    S. Selenska-Pobell, T. Reitz, R. Schönemann, T. Herrmansdörfer, M. L. Merroun, A. Geißler, J. Bartolomé, F. Bartolomé, L. M. García, F. Wilhelm, A. Rogalev, “Magnetic Au nanoparticles on archaeal S-Layer ghosts as templates,” Nanomater. Nanotech. 1, 8–16 (2011).Google Scholar
  203. 203.
    F. Wilhelm, P. Poulopoulos, V. Kapaklis, J.-P. Kappler, N. Jaouen, A. Rogalev, A. N. Yaresko, C. Politis, “Au and Fe magnetic moments in disordered Au–Fe alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 224414 (2008).CrossRefGoogle Scholar
  204. 204.
    K. Dumesnil, M. Dutheil, C. Dufour, and Ph. Mangin, “Spring magnet behavior in DyFe2/YFe2 Laves phases superlattices,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 1136–1140 (2000).CrossRefGoogle Scholar
  205. 205.
    H. Adachi and H. Ino, “A ferromagnet having no net magnetic moment,” Nature 401(6749), 148–150 (1999).CrossRefGoogle Scholar
  206. 206.
    A. Avisou, C. Dufour, K. Dumesnil, and D. Pierre, “Epitaxial growth of (1 1 0) and (1 1 1) SmAl2 films: Deposition temperature dependence of the growth direction,” J. Crystal Growth 297, 239–246 (2006).CrossRefGoogle Scholar
  207. 207.
    A. Avisou, C. Dufour, K. Dumesnil, A. Rogalev, F. Wilhelm, and E. Snoeck, “Long range spin ferromagnetic order with zero magnetization in (111) Sm1 - xGdxAl2 films,” J. Phys.: Condens. Matter 20, 265001 (2008).Google Scholar
  208. 208.
    M. Ungureanu, K. Dumesnil, C. Dufour, N. Gonzalez, F. Wilhelm, A. Smekhova, and A. Rogalev, “Using a zero-magnetization ferromagnet as the pinning layer in exchange-bias systems,” Phys. Rev. B: Condens. Matter Mater. Phys. 82, 174421 (2010).CrossRefGoogle Scholar
  209. 209.
    K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, “Room-Temperature Magnetoresistance in An Oxide Material with An Ordered Double-Perovskite Structure,” Nature 395 (6703), 677–680 (1998).CrossRefGoogle Scholar
  210. 210.
    B. García-Landa, C. Ritter, M. R. Ibarra, J. Blasco, P. A. Algarabel, R. Mahendiran, and J. García, “Magnetic and magnetotransport properties of the ordered perovskite Sr2FeMoO6,” Solid State Commun. 110, 435–438 (1999).CrossRefGoogle Scholar
  211. 211.
    S. Ray, A. Kumar, D. D. Sarma, R. Cimino, S. Turchini, S. Zennaro, N. Zema, “Electronic and magnetic structures of Sr2FeMoO6,” Phys. Rev. Lett. 87, 097204 (2001).CrossRefGoogle Scholar
  212. 212.
    M. Besse, V. Cros, A. Barthélémy, H. Jaffrès, J. Vogel, F. Petroff, A. Mirone, A. Tagliaferri, P. Bencok, P. Decorse, P. Berthet, Z. Szotek, W. M. Temmerman, S. S. Dhesi, N. B. Brookes, A. Rogalev, and A. Fert, “Experimental evidence of the ferrimagnetic ground state of Sr2FeMoO6 probed by X-ray magnetic circular dichroism,” Europhys. Lett. 60, 608–614 (2002).CrossRefGoogle Scholar
  213. 213.
    L. Alff, “Ferrimagnetic double perovskites as spintronic materials,” in Electron Correlation in New Materials and Nanosystems, Ed. by K. Scharnberg and S. Kruchinin, NATO Science Series II, 241, 393–400 (2007).CrossRefGoogle Scholar
  214. 214.
    D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, and A. Kumar, “Electronic structure of Sr2FeMoO6,” Phys. Rev. Lett. 85, 2549–2552 (2000).CrossRefGoogle Scholar
  215. 215.
    Y. Krockenberger, K. Mogare, M. Reehuis, M. Tovar, M. Jansen, G. Vaitheeswaran, V. Kanchana, F. Bultmark, A. Delin, F. Wilhelm, A. Rogalev, A. Winkler, and L. Alff, “Sr2CrOsO6: End point of a spin-polarized metal-insulator transition by 5d band filling,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 020404 (2007).CrossRefGoogle Scholar
  216. 216.
    M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 2472–2475 (1988).CrossRefGoogle Scholar
  217. 217.
    G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B: Condens. Matter 39, 4828–4830 (1989).CrossRefGoogle Scholar
  218. 218.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976; Nauka, Moscow, 1978).Google Scholar
  219. 219.
    M. Angelakeris, P. Poulopoulos, N. Vouroutzis, M. Nyvlt, V. Prosser, S. Visnovsky, R. Krishnan, and N. K. Flevaris, “Structural and spectroscopic magneto-optic studies of Pt–Ni multilayers,” J. Appl. Phys. 82, 5640–5645 (1997).CrossRefGoogle Scholar
  220. 220.
    O. K. Andersen, O. Jepsen, and M. Sob, “Linearized band structure methods,” Lecture Notes in Physics, 283, 1–57 (1987).CrossRefGoogle Scholar
  221. 221.
    F. Wilhelm, P. Poulopoulos, H. Wende, A. Scherz, K. Baberschke, M. Angelakeris, N. K. Flevaris, A. Rogalev, “Systematics of the induced magnetic moments in 5d layers and the violation of the third Hund’s rule,” Phys. Rev. Lett. 87, 207202 (2001).CrossRefGoogle Scholar
  222. 222.
    E. Kravtsov, D. Haskel, S. G. E. te Velthuis, J. S. Jiang, and B. J. Kirby, “Complementary polarized neutron and resonant X-ray magnetic reflectometry measurements in Fe/Gd heterostructures: Case of inhomogeneous intralayer magnetic structure,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 134438 (2009).CrossRefGoogle Scholar
  223. 223.
    N. Jaouen, G. van der Laan, T. K. Johal, F. Wilhelm, A. Rogalev, S. Mylonas, and L. Ortega, “Oscillatory behavior of 5d magnetic moments in Fe/W multilayers,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 094417 (2004).CrossRefGoogle Scholar
  224. 224.
    N. Jaouen, F. Wilhelm, A. Rogalev, J. Goulon, J. M. Tonnerre, “An UHV apparatus for X-ray resonant magnetic reflectivity in the hard X-ray range,” AIP Conf. Proc. 705, 1134–1137 (2004).CrossRefGoogle Scholar
  225. 225.
    N. Jaouen, J. M. Tonnerre, D. Raoux, E. Bontempi, L. Ortega, M. Müenzenberg, W. Felsch, A. Rogalev, H. A. Durr, E. Dudzik, G. van der Laan, H. Maruyama, and M. Suzuki, “Ce 5d magnetic profile in Fe/Ce multilayers for the a and γ-like Ce phases by X-ray resonant magnetic scattering,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 134420 (2002).CrossRefGoogle Scholar
  226. 226.
    L. Seve, N. Jaouen, J. M. Tonnerre, D. Raoux, F. Bartolomé, M. Arend, W. Felsch, A. Rogalev, J. Goulon, C. Gautier, and J. F. Bérar, “Profile of the induced 5d magnetic moments in Ce/Fe and La/Fe multilayers probed by X-ray magnetic-resonant scattering,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 9662–9674 (1999).CrossRefGoogle Scholar
  227. 227.
    G. Woltersdorf, O. Mosendz, B. Heinrich, and C. H. Back, “Magnetization dynamics due to pure spin currents in magnetic double layers,” Phys. Rev. Lett. 99, 246603 (2007).CrossRefGoogle Scholar
  228. 228.
    A. Ghosh, J. F. Sierra, S. Auffret, U. Ebels, W. E. Bailey, “Dependence of nonlocal Gilbert damping on the ferromagnetic layer type in ferromagnet/Cu/Pt heterostructures,” Appl. Phys. Lett. 98, 052508 (2011).CrossRefGoogle Scholar
  229. 229.
    W. E. Bailey, A. Ghosh, S. Auffret S., E. Gautier, U. Ebels, F. Wilhelm, A. Rogalev, “Pd magnetism induced by indirect interlayer exchange coupling,” Phys. Rev. B: Condens. Matter Mater. Phys. 86, 144403 (2012).CrossRefGoogle Scholar
  230. 230.
    Z. Qiu, J. Pearson, and S. Bader, “Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B: Condens. Matter 46, 8659–8662 (1992).CrossRefGoogle Scholar
  231. 231.
    A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, “Finiteelement theory of transport in ferromagnet-normal metal systems,” Phys. Rev. Lett. 84, 2481–2484 (2000).CrossRefGoogle Scholar
  232. 232.
    K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin Seebeck insulator,” Nat. Mater., 9, 894–897 (2010).CrossRefGoogle Scholar
  233. 233.
    Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, “Transmission of electrical signals by spin-wave interconversion in a magnetic insulator,” Nature 464 (7286), 262–266 (2010).CrossRefGoogle Scholar
  234. 234.
    Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, “Enhanced Gilbert damping in thin ferromagnetic films,” Phys. Rev. Lett. 88, 117601 (2002).CrossRefGoogle Scholar
  235. 235.
    S. Y. Huang, X. Fan, D. Qu, Y. P. Chen, W. G. Wang, J. Wu, T. Y. Chen, J. Q. Xiao, and C. L. Chien, “Transport magnetic proximity effects in platinum,” Phys. Rev. Lett. 109, 107204 (2012).CrossRefGoogle Scholar
  236. 236.
    S. Geprägs, S. Meyer, S. Altmannshofer, M. Opel, F. Wilhelm, A. Rogalev, R. Gross, S. T. B. Goennenwein, “Investigation of induced Pt magnetic polarization in Pt/Y3Fe5O12 bilayers,” Appl. Phys. Lett. 101, 262407 (2012).CrossRefGoogle Scholar
  237. 237.
    Y. M. Lu, Y. Choi, C. M. Ortega, X. M. Cheng, J. W. Cai, S. Y. Huang, L. Sun, C. L. Chien, “Pt magnetic polarization on Y3Fe5O12 and magnetotransport characteristics,” Phys. Rev. Lett. 110, 147207 (2013).CrossRefGoogle Scholar
  238. 238.
    S. Geprägs, S. T. B. Goennenwein, M. Schneider, F. Wilhelm, K. Ollefs, A. Rogalev, M. Opel, and R. Gross, “Comment on "Pt magnetic polarization on Y3Fe5O12 and magnetotransport characteristics”, arXiv: 1307.4869.2013.Google Scholar
  239. 239.
    H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goennenwein, and E. Saitoh, “Spin Hall magnetoresistance induced by a nonequilibrium proximity effect,” Phys. Rev. Lett. 110, 206601 (2013).CrossRefGoogle Scholar
  240. 240.
    G. Kioseoglou, A. T. Hanbicki, J. M. Sullivan, M. James, O. M. J. Erve, C. H. Li, S. C. Erwin, R. Mallory, M. Yasar, A. Petrou, and B. T. Jonker, “Electrical spin injection from an n-type ferromagnetic semiconductor into a III–V device heterostructure,” Nat. Mater. 3, 799–803 (2004).CrossRefGoogle Scholar
  241. 241.
    I. Zutic and H. Dery, “Spintronics: Taming Spin Currents,” Nat. Mater. 10, 647–648 (2011).CrossRefGoogle Scholar
  242. 242.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science 294 (5546), 1488–1495 (2001).CrossRefGoogle Scholar
  243. 243.
    B. T. Matthias, R. M. Bozorth, and J. H. Van Vleck, “Ferromagnetic interaction in EuO,” Phys. Rev. Lett. 7, 160–161 (1961).CrossRefGoogle Scholar
  244. 244.
    I. Tsubokawa, “On the magnetic properties of a CrBr3 single crystal,” J. Phys. Soc. Jpn. 15, 1664–1668 (1960).CrossRefGoogle Scholar
  245. 245.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors,” Science 287 (5455), 1019–1022 (2000).CrossRefGoogle Scholar
  246. 246.
    T. C. Kaspar, T. Droubay, S. M. Heald, P. Nachimuthu, C. M. Wang, V. Shutthanandan, C. A. Johnson, D. R. Gamelin, and S. A. Chambers, “Lack of ferromagnetism in n-type cobalt-doped ZnO epitaxial thin films,” New J. Phys 10, 055010 (2008).CrossRefGoogle Scholar
  247. 247.
    E. Sarigiannidou, F. Wilhelm, E. Monroy, R. M. Galera, E. Bellet-Amalric, A. Rogalev, J. Cibert, J. Goulon, and H. Mariette, “Intrinsic ferromagnetism in wurtzite (Ga,Mn)N semiconductor,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 041306 (2006).CrossRefGoogle Scholar
  248. 248.
    M. Sawicki, D. Chiba, A. Korbecka, Y. Nishitani, J. A. Majewski, F. Matsukura, T. Dietl, and H. Ohno, “Experimental probing of the interplay between ferromagnetism and localization in (Ga,Mn)As,” Nat. Phys. 6, 22–25 (2010).CrossRefGoogle Scholar
  249. 249.
    P. Wadley, A. A. Freeman, K. W. Edmonds, G. van der Laan, J. S. Chauhan, R. P. Campion, A. W. Rushforth, B. L. Gallagher, C. T. Foxon, F. Wilhelm, A. G. Smekhova, and A. Rogalev, “Element-resolved orbital polarization in (III,Mn)As ferromagnetic semiconductors from K-edge X-ray magnetic circular dichroism,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 235208 (2010).CrossRefGoogle Scholar
  250. 250.
    M. Opel, S. T. B. Goennenwein, M. Althammer, K.-W. Nielsen, E.-M. Karrer-Muller, S. Bauer, K. Senn, C. Schwark, C. Weier, G. Güntherodt, B. Beschoten, and R. Gross, “Zinc oxide: From dilute magnetic doping to spin transport,” Phys. Status Solidi 251, 1700–1709.Google Scholar
  251. 251.
    A. Ney, M. Opel, T. C. Kaspar, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, S. Bauer, K.-W. Nielsen, S. T. B. Goennenwein, M. H. Engelhard, S. Zhou, K. Potzger, J. Simon, W. Mader, S. M. Heald, J. C. Cezar, F. Wilhelm, A. Rogalev, R. Gross, and S. A. Chambers, “Advanced spectroscopic synchrotron techniques to unravel the intrinsic properties of dilute magnetic oxides: The case of Co: ZnO,” New J. Phys. 12, 013020 (2010).CrossRefGoogle Scholar
  252. 252.
    K. Rode, R. Mattana, A. Anane, V. Cros, E. Jacquet, J.-P. Contour, F. Petroff, A. Fert, M. A. Arrio, Ph. Sainctavit, P. Bencok, F. Wilhelm, N. B. Brookes, and A. Rogalev, “Magnetism of (Zn,Co)O thin films probed by X-ray absorption spectroscopies,” Appl. Phys. Lett. 92, 012509 (2008).CrossRefGoogle Scholar
  253. 253.
    A. Ney, K. Ollefs, S. Ye, T. Kammermeier, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, and A. Rogalev, “Absence of intrinsic ferromagnetic interactions of isolated and paired Co dopant atoms in Zn1 - xCoxO with high structural perfection,” Phys. Rev. Lett. 100, 157201 (2008).CrossRefGoogle Scholar
  254. 254.
    Y. Joly, “X-ray absorption near-edge structure calculations beyond the muffin-tin approximation,” Phys. Rev. B: Condens. Matter Mater. Phys. 63, 125120 (2001).CrossRefGoogle Scholar
  255. 255.
    A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.-P. Kappler, P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Müller, and J. J. Grob, “Paramagnetism of the Co sublattice in ferromagnetic Zn1–xCoxO films,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 125201 (2007).CrossRefGoogle Scholar
  256. 256.
    R. E. Behringer, “Number of single, double, and triple clusters in a system containing two types of atoms,” J. Chem. Phys. 29, 537–539 (1958).CrossRefGoogle Scholar
  257. 257.
    A. Ney, V. Ney, F. Wilhelm, A. Rogalev, and K. Usadel, “Quantification of the magnetic exchange via element-selective high-field magnetometry: Co-doped ZnO epitaxial films,” Phys. Rev. B: Condens. Matter Mater. Phys. 85, 245202 (2012).CrossRefGoogle Scholar
  258. 258.
    P. Koindl, “Optical absorption of Co2+ in ZnO,” Phys. Rev. B: Solid. State 15, 2493–2499 (1977).CrossRefGoogle Scholar
  259. 259.
    A. Ney, T. Kammermeier, K. Ollefs, S. Ye, V. Ney, T. C. Kaspar, S. A. Chambers, F. Wilhelm, and A. Rogalev, “Anisotropic paramagnetism of Co-doped ZnO epitaxial films,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 054420 (2010).CrossRefGoogle Scholar
  260. 260.
    P. Fumagalli, A. Schirmeisen, and R. J. Gambino, “Exchange induced enhancement of Tc in Co1–xEuSx macroscopic ferrimagnets,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 14294–14298 (1998).CrossRefGoogle Scholar
  261. 261.
    S. D. Pappas, P. Poulopoulos, B. Lewitz, A. Straub, A. Goschew, V. Kapaklis, F. Wilhelm, A. Rogalev, and P. Fumagalli, “Direct evidence for significant spinpolarization of EuS in Co/EuS multilayers at room temperature,” Sci. Rep. 3, 1333 (2013).CrossRefGoogle Scholar
  262. 262.
    B. Lewitz, A. Straub, V. Kapaklis, P. Poulopoulos, A. Delimitis, S. D. Pappas, and P. Fumagalli, “Proximity effects and Curie temperature enhancement in Co/EuS and Fe/EuS multilayers,” SPIN 2 (4), 1250016 (2012).CrossRefGoogle Scholar
  263. 263.
    P. J. Jensen, K. H. Bennemann, P. Poulopoulos, M. Farle, F. Wilhelm, K. Baberschke, “Enhanced Induced magnetization in coupled magnetic trilayers in the presence of spin fluctuations,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, R14994–R14997 (1999).CrossRefGoogle Scholar
  264. 264.
    P. Poulopoulos, A. Goschew, V. Kapaklis, M. Wolff, A. Delimitis, F. Wilhelm, A. Rogalev, S. D. Pappas, A. Straub, P. Fumagalli, “Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers,” Appl. Phys. Lett. 104, 112411 (2014).CrossRefGoogle Scholar
  265. 265.
    G. van der Laan, “Applications of soft X-ray magnetic dichroism,” J. Phys.: Conf. Series 430, 012127 (2013).Google Scholar
  266. 266.
    P. Fischer, D. H. Kim, W. Chao, J. A. Liddle, E. H. Anderson, and D. T. Attwood, “Soft X-ray microscopy of nanomagnetism,” Materials Today 9, 26–33 (2006).CrossRefGoogle Scholar
  267. 267.
    S. Eisebitt, J. Luning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, and J. Stöhr, “Lensless imaging of magnetic nanostructures by X-ray spectroholography,” Nature 432, 885–888 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.The European SynchrotronGrenobleFrance

Personalised recommendations