The Physics of Metals and Metallography

, Volume 116, Issue 12, pp 1270–1278 | Cite as

Effect of neutron irradiation on the microstructure and the mechanical and corrosion properties of the ultrafine-grained stainless Cr–Ni steel

  • O. P. Maksimkin
  • M. N. Gusev
  • K. V. Tsai
  • A. V. Yarovchuk
  • O. V. Rybalchenko
  • N. A. Enikeev
  • R. Z. Valiev
  • S. V. Dobatkin
Strength and Plasticity


It has been revealed that the neutron irradiation of ultrafine-grained (UFG) 08Kh18N10T steel after severe plastic deformation (SPD) does not lead to the appearance of defects of radiation origin up to a fluence of 2 × 1020 n/cm2 (~0.05 dpa) and that the strength properties of the material are retained after irradiation. At the same time, this irradiation reduces the corrosion resistance of the steel in a chlorine-containing medium, especially after heating at 550°C with a holding for 1 h after SPD.


neutron irradiation stainless steel ultrafine-grained structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer-Verlag, 2007).Google Scholar
  2. 2.
    M. Samaras, P. M. Derlet, H. V. Swygenhoven, and M. Victoria, “Computer simulation of displacement cascade in nanocrystalline Ni,” Phys. Rev. Lett. 88, 125505 (2002).CrossRefGoogle Scholar
  3. 3.
    J. Markmann, P. Bunzel, H. Rosner, K. W. Liu, K. A. Padmanabhan, R. Birringer, H. Gleiter, and J. Weissmuller, Scr. Mater. 49, 637–644 (2003).Google Scholar
  4. 4.
    R. A. Andrievskii, “Effect of irradiation on the properties of nanomaterials,” Phys. Met. Metallogr. 110, 229–240 (2010).CrossRefGoogle Scholar
  5. 5.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].Google Scholar
  6. 6.
    R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation,” Prog. Mater. Sci. 45, 103–189 (2000).CrossRefGoogle Scholar
  7. 7.
    A. R. Kilmametov, D. V. Gunderov, R. Z. Valiev, A. G. Balogh, and H. Hahn, “Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy,” Scr. Mater. 59, 1027–1030 (2008).CrossRefGoogle Scholar
  8. 8.
    B. Radiguet, A. Etienne, P. Pareige, X. Sauvage, and R. Valiev, “Irradiation behavior of nanostructured 316 austenitic stainless steel,” J. Mater. Sci. 43, 7338–7343 (2008).CrossRefGoogle Scholar
  9. 9.
    V. K. Shamardin, Yu. D. Goncharenko, T. M. Bulanova, A. A. Karsakov, I. V. Alexandrov, M. M. Abramova, and M. V. Karavaeva, “Effect of neutron irradiation on microstructure and properties of austenitic AISI 321 steel subjected to equal-channel angular pressing,” Rev. Adv. Mater. Sci. 31, 167–173 (2012).Google Scholar
  10. 10.
    A. Alsabbagh, R. Z. Valiev, and K. L. Murty, “Influence of grain size on radiation effects in a low carbon steel,” J. Nucl. Mater. 443, 302–310 (2013).CrossRefGoogle Scholar
  11. 11.
    S. V. Dobatkin, S. V. Shagalina, O. I. Sleptsov, and N. A. Krasil’nikov, “Effect of the initial state of a lowcarbon steel on nanostructure formation during highpressure torsion at high strains and pressures,” Russ. Metall. (Metally) 2006, 445–452 (2006).CrossRefGoogle Scholar
  12. 12.
    O. P. Maksimkin, M. N. Gusev, D. S. Matesov, and P. V. Chakrov, “Shear-Punch—A new device and method for determination of mechanical properties of high-radioactive materials,” Vestn. NYaTs, No. 4, 43–46 (2001).Google Scholar
  13. 13.
    M. B. Toloczko, Y. Yokokura, K. Abc, M. L. Hamilton, F. A. Garner, and R. Kurtz, “The effect of specimen thickness and grainsize on mechanical properties obtained from the shear-punch test,” in Small Specimen Test Techniques, ASTM Stock Number STP 1418.2002, pp. 371–379 (2002).CrossRefGoogle Scholar
  14. 14.
    O. P. Maksimkin, M. N. Gusev, and I. S. Osipov, “Parameters of martensitic α′ phase formation at deformation of stainless steels obtained in VVR-K and BN-350 reactors,” Vestn. NYaTs, No. 3, 12–17 (2007).Google Scholar
  15. 15.
    R. Sh. Musalimov and R. Z. Valiev, “"Dilatometric studies of aluminum alloy with submicrograin structure,” Fiz. Met. Metalloved., 74, No. 9, 95–100 (1992).Google Scholar
  16. 16.
    Kh. Ya. Mulyukov, S. B. Khaphizov, and R. Z. Valiev, “Grain boundaries and saturation magnetization in submicron grained nickel,” Phys. Status Solidi A 133, 447–454 (1992).CrossRefGoogle Scholar
  17. 17.
    I. I. Kositsyna, V. V. Sagaradze, and V. I. Kopylov, “Formation of high-strength and high-plastic state in metastable austenitic steels by the method of equalchannel angular pressing,” Phys. Met. Metallogr. 88, 493–498 (1999).Google Scholar
  18. 18.
    V. V. Sagaradze and A. I. Uvarov, Strengthening and Properties of Austenitic Steels (Ural. Od. Ross. Akad. Nauk, Ekaterinburg, 2013) [in Russian].Google Scholar
  19. 19.
    S. V. Dobatkin, L. M. Kaputkina, O. V. Rybal’chenko, and V. S. Komlev, “Phase and structural transformations in corrosion-resistant steels upon high-pressure torsion and heating,” Russ. Metall. (Metally) 2012, 763–771 (2012).CrossRefGoogle Scholar
  20. 20.
    F. F. Khimushin, Stainless Steels (Metallurgiya, Moscow, 1967) [in Russian].Google Scholar
  21. 21.
    S. V. Dobatkin, O. V. Rybal’chenko, and G. I. Raab, “Formation of a submicrocrystalline structure in austenitic 08KH18N10T steel during equal-channel angular pressing followed by heating,” Russ. Metall. (Metally) 2006, 42–48 (2006).CrossRefGoogle Scholar
  22. 22.
    T. S. Buyn, E. H. Lee, and J. D. Hunn, “Plastic deformation in 316LN stainless steel—Characterization of deformation microstructures,” J. Nucl. Mater. 321, 29–39 (2003).CrossRefGoogle Scholar
  23. 23.
    O. P. Maksimkin, “Some problems of radiation strengthening and brittleness of metallic materials,” in Nuclear Radiation Physics (Almaty, 1997), pp. 133–144 [in Russian].Google Scholar
  24. 24.
    K. V. Tsai, O. P. Maksimkin, M. N. Gusev, and P. V. Chakrov, “Effect of afterirradiation annealings on the microstructure and mechanical properties of 12Kh18N9T steel irradiated in the VVR-K reactor to 5 dpa,” in Proc. 5th Int. Conf.: Nuclear and Radiation Physics (Almaty, 2006), Vol. 2, pp. 164–174 [in Russian].Google Scholar
  25. 25.
    O. P. Maksimkin and B. K. Rakhashev, “Reverse martensitic α → γ transformation in 12Kh18N10T steel irradiated to 56 dpa in the BN-350 reactor and deformed at 293 K,” Vestn. NYaTs, No. 3, 161–172 (2009).Google Scholar
  26. 26.
    S. Yu. Mushnikova, V. V. Sagaradze, Yu. I. Filippov, N. V. Kataeva, V. A. Zavalishin, V. A. Malyshevskii, G. Yu. Kalinin, and S. K. Kostin, “Comparative Analysis of Corrosion Cracking of Austenitic Steels with Different Contents of Nitrogen in Chloride and Hydrogen-Containing Media,” Phys. Met. Metallogr. 116, 663–672 (2015).CrossRefGoogle Scholar
  27. 27.
    Yu. I. Filippov, V. V. Sagaradze, V. A. Zavalishin, N. L. Pecherkina, and N. V. Kataeva, “Acoustic Detection of Stress_Corrosion Cracking of Nitrogen Austenitic Steels,” Phys. Met. Metallogr. 115, 624–637 (2014).CrossRefGoogle Scholar
  28. 28.
    H. F. de Abreu and Sh. S. Carvalho, “Deformation induced martensite in an AISI 301LN stainless steel: Characterization and influence on pitting corrosion resistance,” Mater. Res. 10, 359–366 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. P. Maksimkin
    • 1
  • M. N. Gusev
    • 1
  • K. V. Tsai
    • 1
  • A. V. Yarovchuk
    • 1
  • O. V. Rybalchenko
    • 2
    • 3
  • N. A. Enikeev
    • 4
    • 5
  • R. Z. Valiev
    • 4
    • 5
  • S. V. Dobatkin
    • 2
    • 3
  1. 1.Institute of Nuclear PhysicsNational Nuclear Center, Republic of KazakhstanAlmatyRepublic of Kazakhstan
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.National University of Science and Technology (MISiS), Laboratory of Hybrid Nanostructured MaterialsMoscowRussia
  4. 4.Institute of Physics of Advanced Materials (UGATU)UfaRussia
  5. 5.St. Petersburg State University, Laboratory of the Mechanics of Bulk Nanostructured MaterialsSt. PetersburgRussia

Personalised recommendations