The Physics of Metals and Metallography

, Volume 116, Issue 10, pp 1015–1028 | Cite as

Structure and properties of nanostructured NbN and Nb-Si-N films depending on the conditions of deposition: Experiment and theory

  • V. I. Ivashchenko
  • P. L. Skrynskii
  • O. S. Litvin
  • A. D. Pogrebnjak
  • V. N. Rogoz
  • G. Abadias
  • O. V. Sobol’
  • A. P. Kuz’menko
Structure, Phase Transformations, and Diffusion


The first results of studying the phase–structural state, properties, sizes of nanograins, hardness, and microstresses in nanocomposite NbN and Nb-Si-N films are given. The investigated films were obtained by the method of the magnetron sputtering of Nb and Si targets onto silicon substrates at different negative potentials at the substrate (from 0 to–70 V), nitrogen pressures P N, and discharge powers at the targets. To determine the thermal stability of the films, they were annealed at 600, 800, and 1000°C in a vacuum. It was revealed for the first time that the NbN films have a two-phase nanocomposite structure, which consists of δ-NbN (NaCl structure type) and α'-NbN. The δ-NbN phase is also formed in Nb-Si-N films, where it is enveloped by an amorphous Si3N4 phase The hardness of the Nb-Si-N films reaches 46 GPa, which corresponds to the level of superhardness, while the hardness of the NbN nanocomposites is somewhat lower, but also very high (34 GPa). The experimental results for the Nb-Si-N films were explained based on the data obtained from the first-principles calculations of the NbN/Si x N y heterostructures by the moleculardynamics method.


NbN Nb-Si-N molecular dynamics superhardness nanocomposite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Veprek, “Recent attempts to design new superand ultrahard solids leads to nano-sized and nano-structured materials and coatings,” J. Nanosci. Nanotech. 11, 14–35 (2011).CrossRefGoogle Scholar
  2. 2.
    R. A. Andrievsky, I. A. Anisimova, and V. P. Anisimov, “Structure and microhardness of TiN compositional and alloyed films,” Thin Solid Films 205, 171–175 (1991).CrossRefGoogle Scholar
  3. 3.
    P. J. Martin and A. Bendavid, “The filtered arc process and materials deposition,” Surf. Coat. Technol. 142–144, 7–10 (2001).CrossRefGoogle Scholar
  4. 4.
    A. Bendavid, P. J. Martin, T. J. Kinder, and E. W. Preston, “The deposition of NbN and NbC thin films by filtered vacuum cathodic arc deposition,” Surf. Coat. Technol. 163–164, 347–352 (2003).CrossRefGoogle Scholar
  5. 5.
    V. N. Zhitomirsky, I. Grimberg, L. Rapoport, N. A. Travitzky, R. L. Boxman, S. Goldsmith, A. Raihel, I. Lapsker, and B. Z. Weiss, “Structure and mechanical properties of vacuum arc-deposited NbN coatings,” Thin Solid Films 326, 134–142 (1998).CrossRefGoogle Scholar
  6. 6.
    R. L. Boxman, V. N. Zhytomirsky, I. Grimberg, L. Rapoport, S. Goldsmith, and B. Z. Weiss, “Structure and hardness of vacuum arc deposited multi-component nitride coatings of Ti, Zr and Nb,” Surf. Coat. Technol. 125, 257–262 (2000).CrossRefGoogle Scholar
  7. 7.
    V. N. Zhitomirsky, “Structure and properties of cathodic vacuum arc deposited NbN and NbN-based multi-component and multi-layer coatings,” Surf. Coat. Technol. 201, 6122–6130 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines, and F. Levy, “Structural and mechanical properties of sputtered cubic and hexagonal NbNx thin films,” Surf. Coat. Technol. 180–181, 178–183 (2004).CrossRefGoogle Scholar
  9. 9.
    G. A. Fontalvo, V. Terziyska, and C. Mitterer, “Hightemperature tribological behavior of sputtered NbNx thin films,” Surf. Coat. Technol. 202, 1017–1022 (2007).CrossRefGoogle Scholar
  10. 10.
    M. Wen, C. Q. Hu, C. Wang, T. An, Y. D. Su, Q. N. Meng, and W. T. Zheng, “Effects of substrate bias on the preferred orientation, phase transition and mechanical properties for NbN films grown by direct current reactive magnetron sputtering,” J. Appl. Phys. 104, 023527–023527 (2008).CrossRefGoogle Scholar
  11. 11.
    J. E. Alfonso, J. Buitrago, J. Torres, J. F. Marco, and B. Santos, “Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by rf magnetron sputtering,” J. Mater. Sci. 45, 5528–5533 (2010).CrossRefGoogle Scholar
  12. 12.
    K. Singh, A. C. Bidaye, and A. K. Suri, “Magnetron sputtered NbN films with Nb interlayer on mild steel,” Int. J. Corrosion 2011,748168(2011).CrossRefGoogle Scholar
  13. 13.
    N. Hayashi, I. H. Murzin, I. Sakamoto, and M. Ohkubo, “Single-crystal niobium nitride thin films prepared with radical beam assisted deposition,” Thin Solid Films 259, 146–149 (1995).CrossRefGoogle Scholar
  14. 14.
    G. Cappuccio, U. Gambardella, A. Morone, S. Orlando, and G. P. Parisi, “Pulsed laser ablation of NbN/MgO/NbN multilayers,” Appl. Surf. Sci. 109–110, 399–402 (1997).CrossRefGoogle Scholar
  15. 15.
    Y. Dong, Y. Liu, J. Dai, and G. Li, “Superhard Nb-Si-N composite films synthesized by reactive magnetron sputtering,” Appl. Surf. Sci. 252, 5215–5219 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Benkahoul, C. S. Sandu, N. Tabet, M. ParlinskaWojtana, A. Karimia, and F. Levy, “Effect of Si incorporation on the properties of niobium nitride films deposited by dc reactive magnetron sputtering,” Surf. Coat. Technol. 188–189, 435–439 (2004).CrossRefGoogle Scholar
  17. 17.
    C. S. Sandu, M. Benkahoul, R. Sanjines, and F. Levy, “Model for the evolution of Nb-Si-N thin films as a function of Si content relating the nanostructure to electrical and mechanical properties,” Surf. Coat. Technol. 201, 2897–2903 (2006).CrossRefGoogle Scholar
  18. 18.
    C. S. Sandu, R. Sanjines, M. Benkahoul, F. Medjani, and F. Levy, “Formation of composite ternary nitride thin films by magnetron sputtering codeposition,” Surf. Coat. Technol. 201, 4083–4089 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Wang, Z. Song, and K. Xu, “Influence of sputtering bias on the microstructure and properties of Nb-Si-N films,” Surf. Coat. Technol. 201, 4931–4934 (2007).CrossRefGoogle Scholar
  20. 20.
    Z. X. Song, Y. Wang, C. J. F. Wang, C. L. Liu, and K. W. Xu, “The effect of N2 partial pressure on the properties of Nb-Si-N films by RF reactive magnetron sputtering,” Surf. Coat. Technol. 201, 5412–5415 (2007).CrossRefGoogle Scholar
  21. 21.
    J. J. Jeong and C. M. Lee, “Effects of post-deposition annealing on the mechanical and chemical properties of the Si3N4/NbN multilayer coatings,” Appl. Surf. Sci. 214, 11–19 (2003).CrossRefGoogle Scholar
  22. 22.
    J. J. Jeong, S. K. Hwang, and C. Lee, “Hardness and adhesion properties of HfN/Si3N4 and NbN/Si3N4 multilayer coatings,” Mater. Chem. Phys. 77, 27–33 (2003).CrossRefGoogle Scholar
  23. 23.
    W. Wen, Q. N. Meng, C. Q. Hu, T. Ana, Y. D. Sua, W. X. Yua, and W. T. Zheng, “Structure and mechanical properties of δ-NbN/SiNx and δ'-NbN/SiNx nanomultilayer films deposited by reactive magnetron sputtering,” Surf. Coat. Technol. 203, 1702–1708 (2009).CrossRefGoogle Scholar
  24. 24.
    S. Baroni, Corso A. Dal, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, and A. Kokalj, Scholar
  25. 25.
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).CrossRefGoogle Scholar
  26. 26.
    D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B: Condens. Matter 41, 7892–7895 (1990).CrossRefGoogle Scholar
  27. 27.
    S. R. Billeter, A. Curioni, and W. Andreoni, “Efficient linear scaling geometry optimization and transitionstate search for direct wavefunction optimization schemes in density functional theory using a planewave basis,” Comput. Mater. Sci. 27, 437–445 (2003).CrossRefGoogle Scholar
  28. 28.
    V. I. Ivashchenko, S. Veprek, P. E. A. Turchi, and V. I. Shevchenko, “Comparative first-principles study of TiN/SiNx/TiN interfaces,” Phys. Rev. B: Condens. Matter Mater. Phys. 85,195403(2012).CrossRefGoogle Scholar
  29. 29.
    S. Wang, R. Gudipati, A. S. Rao, T. J. Bostelmann, and Y. G. Shen, “First-principles calculations for the elastic properties of nanostructured superhard TiN/SixNy superlattices,” Appl. Phys. Lett. 91,081916(2007).CrossRefGoogle Scholar
  30. 30.
    H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B: Solid State 13, 5188–5192 (1976).CrossRefGoogle Scholar
  31. 31.
    E. I. Isaev, S. I. Simak, I. A. Abrikosov, R. Ahuja, Yu. Kh. Vekilov, M. I. Katsnelson, A. I. Lichtenstein, and B. Johansson, “Phonon related properties of transition metals, their carbides, and nitrides: A first-principles study,” J. Appl. Phys. 101, 123519–18 (2007).CrossRefGoogle Scholar
  32. 32.
    X-ray powder diffraction file [089-5007].Google Scholar
  33. 33.
    A. Darlinski and J. Halbritter, “On the identification of interface oxides and interface serration by ARXPS,” Z. Fresenius Annal. Chem. 329, 266–271 (1987).CrossRefGoogle Scholar
  34. 34.
    G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers (The Scienta ESCA300 Data-Base. Wiley Interscience. 1992).Google Scholar
  35. 35.
    G. Jouve, C. Severac, and S. Cantacuzene, “XPS study of NbN and (NbTi)N superconducting coatings,” Thin Solid Films 287, 146–153 (1996).CrossRefGoogle Scholar
  36. 36.
    A. N. Christensen, O. W. Dietrich, W. Kress, W. D. Teuchert, and R. Currat, “Phonon anomalies in transition metal nitrides: d-NbN,” Solid State Commun. 31, 795–799 (1979).CrossRefGoogle Scholar
  37. 37.
    V. I. Ivashchenko, P. E. A. Turchi, and E. I. Olifan, “Phase stability and mechanical properties of niobium nitrides,” Phys. Rev. B: Condens. Matter Mater. Phys. 82,054109(2010).CrossRefGoogle Scholar
  38. 38.
    A. D. Pogrebnjak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, “Structures and properties of hard and superhard nanocomposite coatings,” Phys.–Usp. 52, 29–54 (2009).CrossRefGoogle Scholar
  39. 39.
    A. D. Pogrebnjak, O. V. Sobol, V. M. Beresnev, P. V. Turbin, G. V. Kirik, N. A. Makhmudov, M. V. Il’yashenko, A. P. Shypylenko, M. V. Kaverin, M. Yu. Tashmetov, and A. V. Pshyk, “Phase composition, thermal stability, physical and mechanical properties of superhard on base Zr–Ti–Si–N nanocomposite coatings,” Nanocomp. Coat. Nanostruct. Mater. Nanotechnol. IV: Ceram. Eng. Sci. Proceed31(7), 127–138(2010).CrossRefGoogle Scholar
  40. 40.
    A. D. Pogrebnjak, “Structure and properties of nanostructured (Ti–Hf–Zr–V–Nb)N Coatings,” J. Nanomater. 2013, Art. ID780125(2013).Google Scholar
  41. 41.
    A. D. Pogrebnjak, A. P. Shpak, V. M. Beresnev, D. A. Kolesnikov, Yu. A. Kunitskii, O. V. Sobol, V. V. Uglov, F. F. Komarov, A. P. Shypylenko, N. A. Makhmudov, A. A. Demyanenko, V. S. Baidak, and V. V. Grudnitskii, “Effect of thermal annealing in vacuum and in air on nanograin sizes in hard and superhard coatings Zr–Ti–Si–N,” J. Nanosci. Nanotech. 12, 9213–9219 (2012).CrossRefGoogle Scholar
  42. 42.
    J. Musil, “Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness,” Surf. Coat. Tech. 207, 50–65 (2012).CrossRefGoogle Scholar
  43. 43.
    S. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” Thin Solid Films 522, 274–282 (2012).CrossRefGoogle Scholar
  44. 44.
    A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, “Application of microand nanoprobes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects,” Phys.–Usp. 55, 270–300(2012).CrossRefGoogle Scholar
  45. 45.
    V. Ivaschenko, S. Veprek, A. Pogrebnjak, and B. Postolnyi, “First–principles quantum molecular dynamics study of TixZr1–xN(111)/SiNy heterostructures and comparison with experimental results,” Sci. Tech. Advan. Mater. 15,025007(2014).CrossRefGoogle Scholar
  46. 46.
    A. D. Pogrebnjak, S. N. Bratushka, V. M. Beresnev, and N. Levintant-Zayonts, “Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses,” Rus. Chem. Rev. 82, 1135–1168 (2013).CrossRefGoogle Scholar
  47. 47.
    A. D. Pogrebnjak and V. M. Beresnev, Nanocoatings, Nanosystems, Nanotechnologies (Bentham Sci. Publ., New York, 2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. I. Ivashchenko
    • 1
  • P. L. Skrynskii
    • 1
  • O. S. Litvin
    • 2
  • A. D. Pogrebnjak
    • 3
  • V. N. Rogoz
    • 3
  • G. Abadias
    • 4
  • O. V. Sobol’
    • 5
  • A. P. Kuz’menko
    • 6
  1. 1.Institute of Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Physics of SemiconductorsNational Academy of Sciences of UkraineKievUkraine
  3. 3.Sumy State University, 40000 SumySumyUkraine
  4. 4.Institut PPoitiersFrance
  5. 5.Kharkov Polytechnical Institute National Technical UniversityKharkovUkraine
  6. 6.Kursk State Technical UniversityKnowledge-Intensive Technologies Center of Collaborative AccessKurskRussia

Personalised recommendations