The Physics of Metals and Metallography

, Volume 116, Issue 9, pp 908–916 | Cite as

Study of the mechanisms of superplastic deformation in Al–Mg–Mn-based alloys

  • O. A. Yakovtseva
  • A. V. MikhaylovskayaEmail author
  • V. S. Levchenko
  • A. V. Irzhak
  • V. K. Portnoy
Strength and Plasticity


The contributions of grain boundary sliding and intragranular dislocation slip in the AMg4 alloy (analog AA5083) during superplastic deformation have been analyzed by analyzing the deformation-induced changes in the sample surface having marker grids patterned by ion beam etching. Optical, electron transmission, and scanning microscopy techniques, and electron backscatter diffraction were used to analyze the changes in dislocation, grain, and subgrain structures during superplastic deformation. It has been shown that dynamic polygonization develops during superplastic deformation. The contribution of diffusion creep is defined from the analysis of precipitation-free zones observed after deformation.


aluminum alloys superplasticity mechanisms grain boundary sliding intragranular dislocation slip diffusion creep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Superplastic Forming of Structural Steels (Metallurgiya, Moscow, 1985) [in Russian].Google Scholar
  2. 2.
    C. E. Pearson, “The viscous properties of extruded eutectic alloys of lead–tin and bismuth–tin,” J. Inst. Metals 54, 111–123 (1934).Google Scholar
  3. 3.
    A. A. Bochvar, Z. A. Sviderskaya, “The phenomenon of superplasticity in alloys of zinc with aluminum,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk 9, 821–827 (1945).Google Scholar
  4. 4.
    T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, New York, 2005).Google Scholar
  5. 5.
    R. C. Gifkins, “Superplasticity, creep and boundary sliding,” Scr. Metall. 7, 27–33 (1973).CrossRefGoogle Scholar
  6. 6.
    S. W. Zehr and W. E. Backofen, “Superplasticity in lead–tin alloys,” Trans. ASM 61, 300–312 (1968).Google Scholar
  7. 7.
    D. G. Attwood and P. M. Hazzledine, “A fiducial grid for high-resolution metallography,” Metallography 9, 483–501 (1976).CrossRefGoogle Scholar
  8. 8.
    G. Rai and N. J. Grant, “Observations of grain boundary sliding during superplasticity deformation,” Metal Trans. 14A, 1451–1458 (1983).CrossRefGoogle Scholar
  9. 9.
    V. K. Portnoy and I. I. Novikov, “Evaluation of grain boundary sliding contribution to the total strain during supersplastic deformation,” Scr. Mater. 40, 39–43 (1999).CrossRefGoogle Scholar
  10. 10.
    M. A. Rust and R. I. Todd, “Surface studies of region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbor switching and absence of dislocation activity,” Acta Mater. 59, 5159–5170 (2011).CrossRefGoogle Scholar
  11. 11.
    M. A. Rust and R. I. Todd, “High resolution surface studies of superplastic deformation,” Mater. Sci. Forum 551–552, 615–620 (2007).CrossRefGoogle Scholar
  12. 12.
    M. A. Rust and R. I. Todd, “High resolution surface studies of superplastic deformation in shear and tension,” Materialwiss. Werkst. 39, 289–292 (2008).CrossRefGoogle Scholar
  13. 13.
    E. Avtokratova, O. Sitdikov, and R. Kaibyshev, “Effect of partially recrystallized structure produced by intense plastic deformation on fatigue behavior of an Al–6% Mg–0.3% Sc alloy,” Mater. Sci. Forum 715–716, 831–836 (2012).CrossRefGoogle Scholar
  14. 14.
    V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys,” J. Alloys Compd. 581, 313–317 (2013).CrossRefGoogle Scholar
  15. 15.
    A. V. Mikhaylovskaya, M. A. Ryazantseva, and V. K. Portnoy, “Effect of eutectic particles on the grain size control and the superplasticity of aluminum alloys,” Mater. Sci. Eng., A 528, 7306–7309 (2011).CrossRefGoogle Scholar
  16. 16.
    A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).CrossRefGoogle Scholar
  17. 17.
    A. Yu. Churyumov, A. V. Mikhailovskaya, A. D. Kotov, A. I. Bazlov, and V. K. Portnoi, “Development of mathematical models of superplasticity properties as a function of parameters of aluminum alloys of Al–Mg–Si system,” Phys. Met. Metallogr. 114, 272–278 (2013).CrossRefGoogle Scholar
  18. 18.
    R. B. Vastava and T. G. Langdon, “An investigation of intercrystalline and interphase boundary sliding in the superplastic Pb–62% Sn eutectic,” Acta Metall. 27, 251–257 (1979).CrossRefGoogle Scholar
  19. 19.
    Z. R. Lin, A. H. Chokshi, and T. G. Langdon, “An investigation of grain boundary sliding in superplasticity at high elongations,” J. Mater. Sci. 23, 2712–2722 (1988).CrossRefGoogle Scholar
  20. 20.
    V. S. Levchenko, V. K. Portnoy, and I. I. Novikov, “Unusual low grain boundary sliding in aluminum alloy with classical features of micro-grain superplasticity, in Superplasticity in Advanced Materials, Ed. by S. Hori, M. Tokizane, N. Furushiro (The Jpn. Soc. for Research on Superplasticity, Osaka, 1991), pp. 39–44.Google Scholar
  21. 21.
    K. Sotoudeh and P. S. Bate, “Diffusion creep and superplasticity in aluminum alloys,” Acta Mater. 58, 1909–1920 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Karim, D. I. Holt, and W. A. Backofen, “Diffusion flow in hydrided Mg–0.5 wt % Zr alloy,” Trans. Metall. Soc. AIME 245, 1131–1132 (1969).Google Scholar
  23. 23.
    P. L. Blackwell and P. S. Bate, “Superplastic deformation without relative grain translation,” Mater. Sci. Forum 304–306, 189–194 (1999).CrossRefGoogle Scholar
  24. 24.
    I. I. Novikov, V. K. Portnoy, A. O. Titov, and D. Yu. Belov, “Dynamic recrystallization at superplastic deformation of duralumin with initial recrystallized structure,” Scr. Mater. 42, 899–904 (2000).CrossRefGoogle Scholar
  25. 25.
    I. I. Novikov, V. K. Portnoy, V. S. Levchenko, and A. O. Nikiforov, “Superplastic-like behavior of coarsegrained single phase aluminum alloys,” Mater. Sci. Forum 463, 243–245 (1997).Google Scholar
  26. 26.
    A. V. Pozdnyakova and V. K. Portnoy, “Aspect of structural variations in superplastic strain of alloy AMg4,” Russ. J. Non-Ferrous Metals 45, 31–36 (2004).Google Scholar
  27. 27.
    T. Takasugi, Y. Watanabe, and H. Inoue, “Dynamic recrystallization and superplastic deformation of Co3Ti,” Scr. Mater. 43, 485–490 (2000).CrossRefGoogle Scholar
  28. 28.
    J. C. Tan and M. J. Tan, “Dynamic continuous recrystallization characteristics in two-stage deformation of Mg–3Al–1Zn alloy sheet,” Mater. Sci. Eng., A 339, 124–132 (2003).CrossRefGoogle Scholar
  29. 29.
    V. K. Portnoy, A. A. Alalykin, and A. N. Ershov, Determination of Superplasticity Factors: Methodical Recom-mendation MP 252-31-86 (VILS, Moscow, 1986) [in Russian].Google Scholar
  30. 30.
    D. H. Bae and A. K. Ghosh, “Grain size and temperature dependence of superplastic deformation in an Al-Mg alloy under isostructural condition,” Acta Mater. 48, 1207–1224 (2000).CrossRefGoogle Scholar
  31. 31.
    A. K. Ghosh, “A new physical model for superplastic flow,” Mater. Sci. Forum 39, 170–172 (1994).Google Scholar
  32. 32.
    F. Reyes-Calderón, I. Mejía, A. Boulaajaj and J. M. Cabrera, “Effect of microalloying elements (Nb, V and Ti) on the hot flow behavor of high-Mn austenitic twinning induced plasticity (TWIP) steel,” Mater. Sci. Eng., A 560, 552–560 (2013).CrossRefGoogle Scholar
  33. 33.
    F. Reyes-Calderón, I. Mejía, and J. M. Cabrera, “Hot deformation activation energy (QHW) of austenitic Fe–22Mn–1.5Al–1.5Si–0.4C TWIP steels microalloyed with Nb, V, and Ti,” Mater. Sci. Eng., A 562, 46–52 (2013).CrossRefGoogle Scholar
  34. 34.
    Focused Ion Beam Systems: Basics and Applications, Ed. by N. Yao (Cambridge Univ., New York, 2007).Google Scholar
  35. 35.
    A. V. Mikhailovskaya, I. S. Golovin, A. A. Zaitseva, V. K. Portnoy, P. Dröttboom, and J. Cifre, “Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain boundary relaxation of Al–4.9Mg alloy,” Phys. Met. Metallogr. 114, 246–255 (2013).CrossRefGoogle Scholar
  36. 36.
    I. I. Novikov, V. K. Portnoy, and V. S. Levchenko, “Investigation of structural changes during superplastic deformation of Zn–22% Al alloy by replica locating technique,” Acta Metall. 29, 1077–1090 (1981).CrossRefGoogle Scholar
  37. 37.
    J. M. Ford, J. Wheeler, and A. B. Movchan, “Computer simulation of grain boundary creep,” Acta Mater. 50, 3941–3955 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. A. Yakovtseva
    • 1
  • A. V. Mikhaylovskaya
    • 1
    Email author
  • V. S. Levchenko
    • 1
  • A. V. Irzhak
    • 2
  • V. K. Portnoy
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of Sciences (IMT RAS)ChernogolovkaRussia

Personalised recommendations