Advertisement

The Physics of Metals and Metallography

, Volume 116, Issue 5, pp 456–466 | Cite as

Modifying the structure and properties of Cu-Fe composites by the methods of pressure formation

  • V. A. Beloshenko
  • V. Yu. Dmitrenko
  • V. V. Chishko
Structure, Phase Transformations, and Diffusion

Abstract

In this survey, the results of the available studies are generalized and the effects of thermomechanical treatment on the structure and the magnetic, mechanical, and electrical properties of Cu-Fe composites produced by the methods of casting, powder metallurgy, and severe plastic deformation are analyzed. The primary attention is paid to the method of packet hydroextrusion, which makes it possible to achieve a wide spectrum of diameters (3 nm−2 mm) of iron fibers and of the amount of fibers (1–8 × 108) in these composites with varying volume content (10–60%). The physical mechanisms of the revealed effects of the structural modification of the physicomechanical characteristics on different scale (macro, micro, and nano) levels are discussed.

Keywords

Cu-Fe composites plastic deformation nanostructure mechanical properties electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, N. E. Khlebova, and V. I. Pantsyrny, “Evolution of microstructure and mechanical properties in Cu-14% Fe alloy during severe cold rolling,” Mater. Sci. Eng., A 564, 264–272 (2013).CrossRefGoogle Scholar
  2. 2.
    B. I. Shapoval, V. M. Azhazha, V. M. Arzhavitin, I. B. Dolya, V. Ya. Sverdlov, M. A. Tikhonovskii, and V. G. Yarovoi, “Some physical and mechanical properties of Cu-Fe microcomposite,” Vopr. At. Nauki Tekh., Ser.: Vakuum, Chistye Mater., Sverkhprovod., No. 1, 133–135 (2002).Google Scholar
  3. 3.
    W. Grünberger, M. Heilmaier, and L. Schultz, “High-strength, high-nitrogen stainless steel-copper composite wires for conductors in pulsed high-field magnets,” Mater. Lett. 52, 154–158 (2002).CrossRefGoogle Scholar
  4. 4.
    J. D. Verhoeven, S. C. Chueh, and E. D. Gibson, “Strength and conductivity of in situ Cu-Fe alloys,” J. Mater. Sci. 24, 1748–1752 (1989).CrossRefGoogle Scholar
  5. 5.
    Liang-Cai Maa, Jian-Min Zhang, and Ke-Wei Xu, “Magnetic and electronic properties of Fe/Cu multilayered nanowires: A first-principles investigation,” Phys. E: Low-Dimen. Syst. Nanostruct. 50, 1–5 (2013).CrossRefGoogle Scholar
  6. 6.
    Yu. L. Zarapin, N. A. Chichenev, and N. G. Chernilevskaya, Production of Composite Materials by Pressure Forming (Metallurgiya, Moscow, 1991) [in Russian].Google Scholar
  7. 7.
    X. P. Lu, D. W. Yao, Y. Chen, L. T. Wang, A. P. Dong, L. Meng, and J. B. Liu, “Microstructure and hardness of Cu-12 wt. % Fe composite at different drawing strains,” J. Zhejiang Univ. Sci. A. 5, 149–156 (2014).CrossRefGoogle Scholar
  8. 8.
    P. D. Funkenbusch and T. H. Courtney, “Microstructural strengthening in cold-worked in situ Cu-14.8 vol % Fe composites,” Scr. Metall. 15, 1349–1354 (1981).CrossRefGoogle Scholar
  9. 9.
    C. Biselli and D. G. Morris, “Microstructure and strength of Cu-Fe in situ composites after very high drawing strains,” Acta Mater. 44, 493–504 (1996).CrossRefGoogle Scholar
  10. 10.
    W. A. Spitzig, L. S. Chumbley, J. D. Verhoeven, Y. S. Go, and H. L. Downing, “Effect of temperature on the strength and conductivity of a deformation processed Cu-20% Fe composite,” J. Mater. Sci. 27, 2005–2011 (1992).CrossRefGoogle Scholar
  11. 11.
    P. D. Funkenbusch and T. H. Courtney, “On the strength of heavily cold worked in situ composites,” Acta Metall. 33, 913–922 (1985).CrossRefGoogle Scholar
  12. 12.
    H. Gao, J. Wang, D. Shu, and B. Sun, “Effect of Ag on the microstructure and properties of Cu-Fe in situ composites,” Scr. Mater. 53, 1105–1109 (2005).CrossRefGoogle Scholar
  13. 13.
    Zhiwei Wu, Jindong Zhang, C. Yi, and Liang Meng, “Effect of rare earth addition on microstructural, mechanical and electrical characteristics of Cu-6% Fe microcomposites,” J. Rare Earths 27, 87–91 (2009).CrossRefGoogle Scholar
  14. 14.
    Z. Yao, M. Ma, Q. Liu, and F. Zhao, “Influence of additional element Zr on strength and conductivity of fiber-reinforced Cu-Fe wire,” Procedia Eng. 16, 594–600 (2011).CrossRefGoogle Scholar
  15. 15.
    B. Sun, H. Gao, J. Wang, and D. Shu, “Strength of deformation processed Cu-Fe-Ag in situ composites,” Mater. Lett. 61, 1002–1006 (2007).CrossRefGoogle Scholar
  16. 16.
    J. S. Song, S. I. Hong, and Y. G. Park, “Deformation processing and strength/conductivity properties of Cu-Fe-Ag microcomposites,” J. Alloys Compd. 388, 69–74 (2005).CrossRefGoogle Scholar
  17. 17.
    R. F. Bunshah, R. Nimmagadda, H. J. Doerr, B. A. Movchan, N. I. Grechanuk, and E. V. Dabizha, “Structure and property relationships in microlaminate Ni-Cu and Fe-Cu condensates,” Thin Solid Films 72, 261–275 (1980).CrossRefGoogle Scholar
  18. 18.
    O. F. Bakkaloğlu, “A magnetic study of sputtered Fe/Cu multilayer films,” J. Magn. Magn. Mater. 182, 324–328 (1998).CrossRefGoogle Scholar
  19. 19.
    F. Petroff, A. Barthelemy, D. H. Mosca, D. K. Lottis, A. P. Fert, A. Schroeder, W. P. Pratt, Jr., R. Loloee, and S. Lequien, “Oscillatory interlayer exchange and magnetoresistance in Fe/Cu multilayers,” Phys. Rev. B: Condens. Matter 44, 5355–5357 (1991).CrossRefGoogle Scholar
  20. 20.
    S. Pizzini, F. Baudelet, D. Chandesris, A. Fontaine, H. Magnan, J. M. George, F. Petroff, A. Barthelemy, A. Fert, R. Loloee, and P. A. Schroeder, “Structural characterization of Fe/Cu multilayers by X-ray absorption spectroscopy,” Phys. Rev. B: Condens. Matter 46, 1253–1256 (1992).CrossRefGoogle Scholar
  21. 21.
    J. Xuesong, Xu. Huibin, and G. Shengkai, “The electrical conductivity characteristics of Fe/Cu nano-scale multilayer materials,” Science in China (Ser. E) 44(1), 83–88 (2001).Google Scholar
  22. 22.
    C. Bisellp and D. G. Morris, “Ìicrostructure and strength of Cu-Fe in situ composites obtained from prealloyed Cu-Fe powders,” Acta Metall. Mater. 42, 163–176 (1994).CrossRefGoogle Scholar
  23. 23.
    Y. S. Go and W. A. Spitzig, “Strengthening in deformation-processed Cu-20% Fe composites,” J. Mater. Sci. 26, 163–171 (1991).CrossRefGoogle Scholar
  24. 24.
    G. A. Jerman, I. E. Anderson, and J. D. Verhoeven, “Strength and electrical conductivity of deformation-processed Cu-15 vol % Fe alloys produced by powder metallurgy techniques,” Metall. Trans. A 24, 35–42 (1993).CrossRefGoogle Scholar
  25. 25.
    J. Z. Jiang, C. Gente, and R. Bormann, “Mechanical alloying in the Fe-Cu system,” Mater. Sci. Eng., A 242, 268–277 (1998).CrossRefGoogle Scholar
  26. 26.
    L. He and E. Ma, “Processing and microhardness of bulk Cu-Fe nanocomposites,” Nanostruct. Mater. 7, 327–339 (1996).CrossRefGoogle Scholar
  27. 27.
    T. Ambrose, A. Gavrin, and C. L. Chien, “Magnetic properties of metastable fcc Fe-Cu alloys prepared by high energy ball milling,” J. Magn. Magn. Mater. 124, 15–19 (1993).CrossRefGoogle Scholar
  28. 28.
    N. A. Azarenkov, V. M. Beresnev, A. D. Pogrebnyak, L. V. Malikov, and P. V. Turbin, Nanomaterials, Nanocoatings, Nanotechnology (KhNU im. V. N. Karazina, Kharkov, 2009) [in Russian].Google Scholar
  29. 29.
    X. Quelennec, A. Menand, J. M. le Breton, R. Pippan, and X. Sauvage, Homogeneous Cu-Fe supersaturated solid solutions prepared by severe plastic deformation,” Philos. Mag. 90, 1179–1195 (2010).CrossRefGoogle Scholar
  30. 30.
    F. Matthews and R. D. Rawlings, Composite Materials. Engineering and Science (CRC Press, Boca Raton, Fla, 1999; Tekhnosfera, Moscow, 2003).Google Scholar
  31. 31.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].Google Scholar
  32. 32.
    R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].Google Scholar
  33. 33.
    Ya. E. Beigel’zimer, V. N. Varyukhin, D. V. Orlov, and S. G. Synkov, Twist Extrusion-The Process for Strain Accumulation (TEAN, Donetsk, 2003) [in Russian].Google Scholar
  34. 34.
    X. Sauvage, F. Wetscher, and P. Pareige, “Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite,” Acta Mater. 53, 2127–2135 (2005).CrossRefGoogle Scholar
  35. 35.
    Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials-Development of the accumulative roll-bonding (ARB) process,” Acta Mater. 47, 579–583 (1999).CrossRefGoogle Scholar
  36. 36.
    I. M. Neklyudov, V. A. Belous, V. N. Voevodin, S. Yu. Didenko, N. I. Il’chenko, Yu. S. Didenko, Yu. N. Il’chenko, A. G. Rudenko, and G. N. Tolmacheva, “Mechanical properties and structure of microlaminates of copper-iron system,” Vopr. At. Nauki Tekhn., Ser. Fiz. Radiat. Povrezhd. Radiat. Materialoved., No. 5, 95–101 (2010).Google Scholar
  37. 37.
    B. Huang, K. N. Ishihara, and P. H. Shingu, “Bulk nano-scale Fe/Cu multilayers produced by repeated pressing-rolling and their magnetoresistance,” Mater. Sci. Lett. 19, 1763–1765 (2000).CrossRefGoogle Scholar
  38. 38.
    B. Huang, K. N. Ishihara, and P. H. Shingu, “Preparation of high strength bulk nano-scale Fe/Cu multilayers by repeated pressing-rolling,” Mater. Sci. Lett. 20, 1669–1670 (2001).CrossRefGoogle Scholar
  39. 39.
    M. I. Karpov, B. A. Gnessin, V. I. Vnukov, N. V. Medved, V. P. Korjov, G. E. Abrosimova, and I. M. Khodoss, “The formation of the structure and mechanical properties of multi-layered metallic composites with nanometrical layers thickness,” Proc. 16th Int. Plansee-Semin., Reutte, Tirol, Austria. 2005, Vol. 1, pp. 785–795.Google Scholar
  40. 40.
    M. I. Karpov, V. I. Vnukov, N. V. Medved’, K. G. Volkov, and I. I. Khodos, “Multilayered Cu-Fe composite with nanometric thickness of layers,” Materialovedenie, No. 1, 36–39 (2005).Google Scholar
  41. 41.
    V. P. Korzhov and M. I. Karpov, “Mechanical properties of multilayered micro- and nanocomposite materials from deformed metals obtained by diffusion welding and rolling methods,” Proc. Int. Sci.-Tech. Conf. “Contemporary Methods and Technologies of Material Formation and Treatment“ Minsk, 2010, in 3 books. Book 1, pp. 123–128 [in Russian].Google Scholar
  42. 42.
    M. I. Karpov, V. P. Korzhov, V. N. Zverev, V. I. Vnukov, and I. S. Zheltyakova, “Microstructure and critical density of film composite current with nanosized layers from Nb-Ti superconducting layers,” Fiz. Tekh. Vys. Davl. 18(4), 70–76 (2008).Google Scholar
  43. 43.
    O. B. Dugadko, M. Matrosov, V. Z. Spuskanyuk, B. A. Shevchenko, and E. O. Medveds’ka, UA Patent 56651 (2003).Google Scholar
  44. 44.
    V. N. Varyukhin, A. B. Dugadko, N. I. Matrosov, V. Z. Spuskanyuk, L. F. Sennikova, E. A. Pavlovskaya, B. A. Shevchenko, and O. N. Mironova, “Regularities of strengthening of fiber materials obtained by packet hydroextrusion,” Fiz. Tekh. Vys. Davl. 13(1), 96–105 (2003).Google Scholar
  45. 45.
    S. G. Synkov, V. G. Synkov, and A. N. Sapronov, “Packet hydroextrusion of microfibers from chromium-nickel steels,” Fiz. Tekh. Vys. Davl. 6(2), 141–145 (1996).Google Scholar
  46. 46.
    F. Wacquant and S. Denolly, “Hexagonal array of submicroscopic ferromagnetic wires obtained by multiple extrusion of bulk samples,” J. Appl. Phys. 85, 5483–5485 (1999).CrossRefGoogle Scholar
  47. 47.
    S. Gangopadhyay, G. C. Hadjipanayi, B. Dale, C. M. Sorensen, and K. J. Klabunde, “Magnetism of ultrafine particles,” Nanostruct. Mater. 1, 77–81 (1992).CrossRefGoogle Scholar
  48. 48.
    I. V. Zolotukhin, “Nanocrystalline metallic materials,” Soros. Obraz. Zh., No. 1, 103–106 (1998).Google Scholar
  49. 49.
    G. I. Frolov, O. I. Bachina, M. M. Zav’yalova, and S. I. Ravochkin, “Magnetic properties of nanoparticles of 3d metals,” Tech. Phys. 53, 1059–1064 (2008).CrossRefGoogle Scholar
  50. 50.
    A. N. Cherkasov, V. A. Beloshenko, V. Z. Spuskanyuk, V. Yu. Dmitrenko, and B. A. Shevchenko, “Low-frequency magnetic susceptibility of fiber Fe-Cu composites,” Phys. Met. Metallogr. 104, 136–141 (2007).CrossRefGoogle Scholar
  51. 51.
    V. A. Beloshenko, V. N. Varyukhin, V. Yu. Dmitrenko, Yu. I. Nepochatykh, and A. N. Cherkasov, “Cu-Fe fiber composites obtained by packet hydroextrusion method: Structure, mechanical and resistive properties,” Fiz. Tekh. Vys. Davl. 20, 110–118 (2010).Google Scholar
  52. 52.
    V. A. Beloshenko, V. Yu. Dmitrenko, and V. V. Chishko, “Properties of metallic fiber composites with copper matrix obtained by packet hydroextrusion method,” Obrab. Mater. Davleniem, No. 1, 85–89 (2012).Google Scholar
  53. 53.
    V. A. Beloshenko, V. N. Varyukhin, V. Yu. Dmitrenko, Yu. I. Nepochatykh, V. Z. Spuskanyuk, A. N. Cherkasov, and B. A. Shevchenko, “Structure and magnetic properties of Cu-Fe fiber composites obtained using packet hydrostatic extrusion,” Tech. Phys. 54, 1790–1794 (2009).CrossRefGoogle Scholar
  54. 54.
    V. A. Beloshenko, V. N. Varyukhin, V. Yu. Dmitrenko, Yu. I. Nepochatykh, and A. N. Cherkasov, “Curie temperature of Cu-Fe fiber composites obtained by packet hydroextrusion,” Vopr. Materialoved. 66(2), 37–41 (2011).Google Scholar
  55. 55.
    N. Yu. Zolotorevskii, E. V. Nesterova, V. V. Rybin, and Yu. F. Titovets, “Micro- and macrotexture evolution during steel-wire drawing,” Phys. Met. Metallogr. 99, 73–79 (2005).Google Scholar
  56. 56.
    G. Mazzone and M. V. Antisari, “Structural and magnetic properties of metastable fcc Cu-Fe alloys,” Phys. Rev. B: Condens. Matter 54, 441–446 (1996).CrossRefGoogle Scholar
  57. 57.
    A. R. Yavari, P. J. Desré, and T. Benameur, “Mechanically driven alloying of immiscible elements,” Phys. Rev. Lett. 68, 2235–2238 (1992).CrossRefGoogle Scholar
  58. 58.
    V. M. Beresnev, A. D. Pogrebnyak, N. A. Azarenkov, V. I. Farenik, G. V. Kirik, “Nanocrystalline and nanocomposite coatings, structure, properties,” Phys. Surf. Eng. 5, 4–27 (2007).Google Scholar
  59. 59.
    R. Bozort, Ferromagnetism (Van Nostrand, 1951; Inostrannaya Literatura, Moscow, 1956).Google Scholar
  60. 60.
    L. I. Rabkin, High-Frequency Ferromagnets (Fizmatgiz, Moscow, 1960) [in Russian].Google Scholar
  61. 61.
    N. I. Noskova, V. V. Shulika, A. G. Lavrent’ev, A. P. Potapov, and G. S. Korzunin, “Effect of nanocrystallization conditions on the structure and magnetic properties of Fe- and Co-based amorphous alloys,” Phys. Met. Metallogr. 100, 557–563 (2005).Google Scholar
  62. 62.
    E. E. Shalygina, I. Skorvanek, P. Svek, V. A. Mel’nikov, and N. M. Abrosimova, “Inverted near-surface hysteresis loops in heterogeneous (nanocrystalline/amorphous) Fe81Nb7B12 alloys,” J. Exper. Theor. Phys. 99, 544–551 (2004).CrossRefGoogle Scholar
  63. 63.
    C. A. dos Santos and B. Rodmacq, “Inverted and crossed hysteresis loops in Ag/Ni multilayers,” J. Magn. Magn. Mater. 147, L250–L252 (1995).CrossRefGoogle Scholar
  64. 64.
    M. J. O’Shea and A. Al-Sharif, “Inverted hysteresis in magnetic systems with interface exchange,” J. Appl. Phys. 7, 6673–6675 (1994).CrossRefGoogle Scholar
  65. 65.
    Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (North-Holland, New York, 1983; Metallurgiya, Moscow, 1987).Google Scholar
  66. 66.
    E. I. Kondorskii, “Nature of high coercive force of low-dispersed ferromagnets and the theory of single-domain structure,” Izv. Akad. Nauk SSSR, Ser. Fiz. 16, 398–411 (1952).Google Scholar
  67. 67.
    Belov, K.P., Magnetostriction Phenomena and Their Applications (Nauka, Moscow, 1987) [in Russian].Google Scholar
  68. 68.
    C. Chen, O. Kitakami, and Y. Shimoda, “Particle size effects and surface anisotropy in Fe-based granular films,” J. Appl. Phys. 84, 2184–2188 (1998).CrossRefGoogle Scholar
  69. 69.
    E. F. Kneller and F. E. Luborsky, “Particle size dependence of coercivity and remanence of single-domain particles,” J. Appl. Phys. 34, 656–658 (1963).CrossRefGoogle Scholar
  70. 70.
    S. A. Nepiiko, Physical Properties of Small Metallic Particles (Naukova Dumka, Kiev, 1985) [in Russian].Google Scholar
  71. 71.
    W. F. Brown, Micromagnetics (Wiley, New York, 1963).Google Scholar
  72. 72.
    E. F. Kneller, Magnetism and Metallurgy (Academc, New York, 1969), Vol. 1.Google Scholar
  73. 73.
    P. A. Chernavskii, “The new in magnetic methods of metal-coated catalyst study,” Ross. Khim. Zh. 46(3), 19–30 (2002).Google Scholar
  74. 74.
    T. I. Arbuzova, B. A. Gizhevskii, R. G. Zakharov, S. A. Petrova, and N. M. Chebotaev, “Magnetic susceptibility of nanostructural manganite LaMnO3+δ produced by mechanochemistry method,” Phys. Solid State 50, 1487–1494 (2008).CrossRefGoogle Scholar
  75. 75.
    R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials: I. Structure characteristics, thermodynamics, phase equilibria, and transport phenomena,” Phys. Met. Metallogr. 88, 48–66 (1999).Google Scholar
  76. 76.
    R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials: II. Mechanical and physical properties,” Phys. Met. Metallogr. 89, 83–103 (2000).Google Scholar
  77. 77.
    A. I. Gusev, “Effects of the nanocrystalline state in solids,” Phys-Usp. 41, 49–76 (1998).CrossRefGoogle Scholar
  78. 78.
    V. A. Pozdnyakov, “Mechanisms of plastic deformation and the anomalies of the Hall-Petch dependence in metallic nanocrystalline materials,” Phys. Met. Metallogr. 96, 105–118 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Beloshenko
    • 1
  • V. Yu. Dmitrenko
    • 1
  • V. V. Chishko
    • 1
  1. 1.Galkin Donetsk Institute for Physics and Technology (DonPT)National Academy of Sciences of UkraineDonetskUkraine

Personalised recommendations