Advertisement

The Physics of Metals and Metallography

, Volume 115, Issue 13, pp 1285–1294 | Cite as

Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

  • S. A. Park
  • J. G. Kim
  • Y. S. He
  • K. S. Shin
  • J. B. Yoon
Article

Abstract

The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

Keywords

cold rolled steel hot rolled steel corrosion inclusion grain refinement grain orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Gardner, N. Saari, and F. Wang, “Comparative experimental study of hot-rolled and cold-formed rectangular hollow sections,” Thin-Walled Struct. 48, 495–507 (2010).CrossRefGoogle Scholar
  2. 2.
    Yégen and M. Usta, “The effect of salt bath cementation on mechanical behavior of hot-rolled and colddrawn SAE 8620 and 16MnCr5 steels,” Vacuum 85, 390–396 (2010).CrossRefGoogle Scholar
  3. 3.
    D. Clover, B. Kinsella, B. Pejcic, and R. D. Marco, “The influence of microstructure on the corrosion rate of various carbon steel,” J. Appl. Electrochem. 35, 139–149 (2005).CrossRefGoogle Scholar
  4. 4.
    K. D. Ralston and N. Birbilis, “Effect of grain size on corrosion: A review”, Corrosion 66, 075005–1075005-13 (2010).CrossRefGoogle Scholar
  5. 5.
    A. Balakrishnan, B. C. Lee, T. N. Kim, and B. B. Panigrahi, “Corrosion behavior of ultra fine grained titanium in simulated body fluid for implant application,” Trends Biomater. Artif. Organs 22, 58–64 (2008).Google Scholar
  6. 6.
    E. Kus, Z. Lee, S. Nutt, and F. Mansfeld, “A comparison of the corrosion behavior of nanocrystalline and conventional Al 5083 samples,” Corrosion 62, 152–161 (2006).CrossRefGoogle Scholar
  7. 7.
    M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim, and J. C. Lee, “Effect of the number of ECAP10 pass time on the electrochemical properties of 1050 Al alloys,” Mater. Sci. Eng., A 366, 282–291 (2004).CrossRefGoogle Scholar
  8. 8.
    R. J. Hellmig, M. Janecek, B. Hadzima, O. V. Gendelman, M. Shapiro, X. Molodova, A. Springer, and Y. Estrin, “A portrait of copper processed by equal channel angular pressing,” Mater. Trans. 49, 31–37 (2008).CrossRefGoogle Scholar
  9. 9.
    I. I. Reformatskaya and L. I. Freiman, “Precipitation of sulfide inclusions in steel structure and their effect on local corrosion process,” Prot. Met. 37, 511–516 (2001).CrossRefGoogle Scholar
  10. 10.
    G. Wranglen, “Review article on the influence of sulphide inclusions on the corrodibility or Fe and steel,” Corros. Sci. 9, 558–602 (1969).Google Scholar
  11. 11.
    R. D. Knutsen and A. Ball, “The influence of inclusions on the corrosion behavior of a 12 wt % chromium steel,” Corrosion 47, 359–368 (1991).CrossRefGoogle Scholar
  12. 12.
    J. J. Gray, B. S. EI Dasher, and C. A. Orme, “Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study,” Surf. Sci. 600, 2488–2494 (2006).CrossRefGoogle Scholar
  13. 13.
    J. V. Cathcart, G. F. Petersen, and C. J. Sparks, “The structure of thin oxide films formed on nickel crystals,” J. Electrochem. Soc. 116, 664–668 (1969).CrossRefGoogle Scholar
  14. 14.
    N. N. Khoi, W. W. Smeltzer, and J. D. Embury, “Growth and structure of nickel oxide on nickel crystal faces,” J. Electrochem. Soc. 122, 1495–1503 (1975).CrossRefGoogle Scholar
  15. 15.
    U. Konig and B. Davepon, “Microstructure of polycrystalline Ti and its microelectrochemical properties by means of electron-backscattering diffraction (EBSD),” Electrochim. Acta 47, 149–160 (2001).CrossRefGoogle Scholar
  16. 16.
    K. R. Lawless and A. T. Gwathmey, “The structure of oxide films on different faces of a single crystal of copper,” Acta. Metall. 4, 153–163 (1956).CrossRefGoogle Scholar
  17. 17.
    C. A. Schuh, K. Anderson, and C. Orme, “Rapid assessment of anisotropic surface processes: experiments on the corrosion of Inconel 600,” Surf. Sci. 544, 183–192 (2003).CrossRefGoogle Scholar
  18. 18.
    C. Xu, M. Hassel, H. Kuhlenbeck, and Feund, “Adsorption and reaction on oxide surfaces: NO, NO2 on Cr2O3(111)/Cr(110),” Surf. Sci. 258, 23–34 (1991).CrossRefGoogle Scholar
  19. 19.
    T. Barsotti, J. M. Bermond, and M. Drechsler, “A measurement of the surface energy anisotropy of nickel by transmission electron microscopy of field emitter crystals,” Surf. Sci. 146, 467–479 (1984).CrossRefGoogle Scholar
  20. 20.
    F. Young and F. Cathcart, “The rates of oxidation of several faces of a single crystal of copper as determined with elliptically polarized light,” Acta. Metall. 4, 145–152 (1967).CrossRefGoogle Scholar
  21. 21.
    J. P. Pemsler, “Studies on the Oxygen Gradients in Oxidizing Metals: I. Zirconium,” J. Electrochem. Soc. 111, 381–385 (1964).CrossRefGoogle Scholar
  22. 22.
    S. A. Park, W. S. Ji, and J. G. Kim, “Effect of chromium on the corrosion behavior of low-alloy steels containing copper in FGD environment,” Int. J. Electrochem. Sci. 8, 7498–7509 (2013).Google Scholar
  23. 23.
    D. P. Le, W. S. Ji, J. G. Kim, K. J. Jeong, and S. H. Lee, “Effect of antimony on the corrosion behavior of lowalloy steel for flue gas desulfurization,” Corros. Sci. 50, 1195–1204 (2008).CrossRefGoogle Scholar
  24. 24.
    ASTM G 1-90, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (Annual Book of ASTM Standards) (West Conshohocken, USA, 2002).Google Scholar
  25. 25.
    ASTM G 31-72, Standard Practice for Laboratory Immersion Corrosion Testing of Metals (Annual Book of ASTM Standards) (West Conshohocken, USA, 2002).Google Scholar
  26. 26.
    D. A. Jones, Principles and Prevention of Corrosion (Prentice Hall, Upper Saddle River, NJ, 1996).Google Scholar
  27. 27.
    S. A. Park, J. G. Kim, and J. B. Yoon, “Effect of W, Mo and Ti on the corrosion behavior of low alloy steel in sulfuric acid,” Corrosion 70, 196–205 (2014).CrossRefGoogle Scholar
  28. 28.
    G. A. Zhang and Y. F. Cheng, “On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production,” Corros. Sci. 51, 87–94 (2009).CrossRefGoogle Scholar
  29. 29.
    D. D. Macdonald, “A method for estimating impedance parameters for electrochemical systems that exhibit pseudoinductance,” J. Electrochem. Soc. 125, 2062–2064 (1978).CrossRefGoogle Scholar
  30. 30.
    X. Guo, H. Imaizumi, and K. Katoh, “The behavior of passive films on carbon steel in sulfuric acid solutions,” J. Electroanal. Chem. 383, 99–104 (1995).CrossRefGoogle Scholar
  31. 31.
    C. D. Wagner, J. F. Moulder, L. E. Davis, and W. M. Riggs, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics Division, Minnesota, 1979).Google Scholar
  32. 32.
    J. H. Hong, S. H. Lee, J. G. Kim, and J. B. Yoon, “Corrosion behavior of copper containing low alloy steels in sulphuric acid,” Corros. Sci. 54, 174–182 (2012).CrossRefGoogle Scholar
  33. 33.
    Y. S. Choi, J. J. Shim, and J. G. Kim, “Effect of Cr, Cu, Ni and Ca on the corrosion behavior of low carbon steel in synthetic tap water,” J. Alloys Compd. 391, 162–169 (2005).CrossRefGoogle Scholar
  34. 34.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution (Nation. Assoc. Corros. Eng., Houston, 1974).Google Scholar
  35. 35.
    A. L. Pitman, M. Pourbaix, and N. Zoubov, “Potential-PH diagram of the antimony-water system — Its applications to properties of the metal, its compounds, its corrosion, and antimony electrodes,” J. Electrochem. Soc. 104, 594–600 (1957).CrossRefGoogle Scholar
  36. 36.
    N. D. Nam and J. G. Kim, “Effect of niobium on the corrosion behavior of low alloy steel in sulphuric acid solution,” Corros. Sci. 52, 14–20 (2010).CrossRefGoogle Scholar
  37. 37.
    R. F. North and M. J. Pryor, “The nature of protective films formed on a Cu-Fe alloy,” Corros. Sci. 9, 509–517 (1969).CrossRefGoogle Scholar
  38. 38.
    Y. Li, F. Wang, and G. Liu, “Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel,” Corrosion 60, 891–896 (2004).CrossRefGoogle Scholar
  39. 39.
    E. Aghemenloh, J. O. Umukoro, S. O. Azi, S. Yusuf, and J. O. A. Idiodi, “Surface energy calculation of BCC metals using the analytical equivalent crystal theory method,” Compt. Mater. Sci. 50, 3290–3296 (2011).CrossRefGoogle Scholar
  40. 40.
    J. J. Gray, B. S. El Dasher, and C. A. Orme, “Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy,” Surf. Sci. 600, 2488–2494 (2006). (cf. [12])CrossRefGoogle Scholar
  41. 41.
    R. F. Ashton and M. T. Hepworth, “Effect of crystal orientation on the anodic polarization and passivity of zinc,” Corrosion 24, 50–53 (1968).CrossRefGoogle Scholar
  42. 42.
    H. Park and J. A. Szpunar, “The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings,” Corros. Sci. 40, 525–545 (1998).CrossRefGoogle Scholar
  43. 43.
    J. L. Weininger and M. W. Breiter, “Effect of crystal structure on the anodic oxidation of nickel,” J. Electrochem. Soc. 10, 484–490 (1963).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. A. Park
    • 1
  • J. G. Kim
    • 1
  • Y. S. He
    • 2
  • K. S. Shin
    • 2
  • J. B. Yoon
    • 3
  1. 1.Department of Advanced Materials EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.School of Nano Materials EngineeringChangwon National UniversityChangwonRepublic of Korea
  3. 3.POSCO Technical Research Lab.PohangRepublic of Korea

Personalised recommendations