Advertisement

The Physics of Metals and Metallography

, Volume 115, Issue 7, pp 650–654 | Cite as

Effect of annealing on magnetostrictive characteristics of a grain-oriented electrical steel with ordinary and refined domain structure

  • A. A. Redikul’tsevEmail author
  • G. S. Korzunin
  • M. L. Lobanov
  • G. M. Rusakov
  • L. V. Lobanova
Electrical and Magnetic Properties

Abstract

We present the results of investigating the effect of annealing on the magnetostrictive characteristics of a grain-oriented electrical steel (GOES) with ordinary and refined domain structure. Not infrequently, the annealing of sheet samples leads to an increase in the electromagnetic induction B 100 and, simultaneously, to an enhancement in the specific electromagnetic losses P 1.7/50. In a GOES with a refined domain structure, the minimum absolute values of λ0-peak and λpeak-peak are observed before annealing. For these samples, after annealing, the magnetostrictive characteristics are impaired most severely. The mechanism for explaining this experimental fact has been suggested.

Keywords

grain-oriented electrical steel magnetic properties magnetostriction domain structure laser treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Zaikova, I. E. Startseva, and B. N. Filippov, Domain Structure and Magnetic Properties of Electrotechnical Steels (Nauka, Moscow, 1992) [in Russian].Google Scholar
  2. 2.
    Z. Valković, “Effect of electrical steel grade on transformer core audible noise,” J. Magn. Magn. Mater. 133, 607–609 (1994).CrossRefGoogle Scholar
  3. 3.
    A. Ilo, H. Pfutzner, and T. Nakata, “Critical induction-A key quantity for the optimization of transformer core operation,” J. Magn. Magn. Mater. 215–216, 637–640 (2000).CrossRefGoogle Scholar
  4. 4.
    D. Snell, “Noise generated by model step lap core configurations of grain oriented electrical steel,” J. Magn. Magn. Mater. 320, 887–890 (2008).CrossRefGoogle Scholar
  5. 5.
    M. Yabumoto, S. Arai, R. Kawamata, M. Mizokami, and T. Kubota, “Recent development in grain-oriented electrical steel with low magnetostriction,” J. Mater. Eng. Perform. 6, 713–721 (1997).CrossRefGoogle Scholar
  6. 6.
    B. Weiser, H. Pfutzner, and J. Anger, “Relevance of magnetostriction and forces for the generation of audible noise of transformer cores,” IEEE Trans. Magn. 36, 3759–3777 (2000).CrossRefGoogle Scholar
  7. 7.
    M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Electrotechnical anisotropic steel. Part 1. History of development,” Metal Sci. Heat Treat. 53, 326–332 (2011).CrossRefGoogle Scholar
  8. 8.
    M. L. Lobanov, G. M. Rusakov, and A. A. Redikul’tsev, “Electrotechnical anisotropic steel. Part 2. State-of-the-art,” Metal Sci. Heat Treat. 53, 355–359 (2011).CrossRefGoogle Scholar
  9. 9.
    L. S. Karenina, Yu. N. Dragoshanskii, R. B. Puzhevich, and G. S. Korzunin, “Effect of an electrical insulating coating on the efficiency of laser treatment of grain-oriented electrical steel,” Phys. Met. Metallogr. 112, 231–236 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Fujikura, S. Arai, M. Mizokami, H. Mogi, and T. Kubota, US Patent 6558479, 2003.Google Scholar
  11. 11.
    M. Hastenrath, “Developments of electrical steel (ThyssenKrupp),” in Electrical Steel and Core Performance (Proc. IEEE Transformer Committee Fall Meeting) (Chicago, 2009).Google Scholar
  12. 12.
    I. Mogi, et al., Electrical steel sheet for low-noise transformer, US Patent Application publication 2004/0178872A1. 2004.Google Scholar
  13. 13.
    R. Girgis, “Performance of electrical steel in transformer cores (ABB),” in Electrical Steel and Core Performance (Proc. IEEE Transformer Committee Fall Meeting) (Chicago, 2009).Google Scholar
  14. 14.
    L. S. Karenina, G. S. Korzunin, and R. B. Puzhevich, “Effect of the phosphate component of electrical insulating coating on the magnetic losses in grain-oriented electrical steel,” Phys. Met. Metallogr. 111, 21–24 (2011).CrossRefGoogle Scholar
  15. 15.
    T. Yamamoto and T. Nozawa, “Effects of tensile stress on total loss of single crystals of 3% silicon-iron,” J. Appl. Phys. 41, 2981–2984 (1970).CrossRefGoogle Scholar
  16. 16.
    Yu. N. Dragoshanskii, E. B. Khan, and V. A. Zaikova, “Continuous forward motion of domain structure in alternative fields and its effect on the value of electromagnetic losses in Fe-3%Si alloy,” Fiz. Met. Metalloved. 39, 289 (1975).Google Scholar
  17. 17.
    B. K. Sokolov, Yu. N. Dragoshanskii, V. S. Matveeva, M. B. Tsyrlin, and R. B. Puzhevich, “Inhomogeneity of magnetic properties of an anisotropic electrical steel and specific features of dislocation structures,” Russ. J. Nondestruct. Testing 40, 768–775 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. A. Redikul’tsev
    • 1
    Email author
  • G. S. Korzunin
    • 2
  • M. L. Lobanov
    • 2
  • G. M. Rusakov
    • 1
    • 2
  • L. V. Lobanova
    • 1
  1. 1.Yeltsin Ural Federal UniversityEkaterinburgRussia
  2. 2.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations