Advertisement

The Physics of Metals and Metallography

, Volume 115, Issue 7, pp 705–709 | Cite as

Thermophysical properties of Ti-5Al-5V-5Mo-3Cr-1Zr titanium alloy

  • V. A. Bykov
  • T. V. Kulikova
  • L. B. Vedmid’
  • A. Ya. Fishman
  • K. Yu. Shunyaev
  • N. Yu. Tarenkova
Structure, Phase Transformations, and Diffusion

Abstract

The thermophysical properties of the Ti-5Al-5V-5Mo-3Cr-1Zr titanium alloy in a wide range of temperatures from room temperature to 1000°C have been studied by the methods of differential scanning calorimetry, the laser flash method, and dilatometry. The obtained data on heat capacity, thermal diffusivity, and thermal expansion have been used for calculating coefficient of thermal conductivity. The sequence and temperatures of structural transformations during heating of the alloy have been established. It has been shown that the studied alloy possesses a coefficient of thermal conductivity that is 3.5–4 times smaller than that of pure titanium.

Keywords

titanium alloy thermal conductivity heat capacity thermal expansion thermal diffusivity high temperatures measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Il’in, B. A. Kolachev, and I. S. Pol’kin, Titanium Alloys. Composition, Structure, Properties (VILS-MATI, Moscow, 2009) [in Russian].Google Scholar
  2. 2.
    G. Lütjering and J. Williams, Titanium: Engineering Materials and Processes (Springer-Verlag, Berlin, 2007).Google Scholar
  3. 3.
    C. Leyens and M. Peters, Titanium and Titanium Alloys—Fundamentals and Applications (Wiley, Weinheim, 2003).CrossRefGoogle Scholar
  4. 4.
    Program Complex “DEFORM”. http://www.tesis.com.ru/software/deform/#addit
  5. 5.
    R. R. Boyer and R. D. Briggs, “The use of β titanium alloys in the aerospace industry,” J. Mater. Eng. Perform. 14, 681–685 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Yu. Belyaev, Yu. M. Bagazeev, and V. S. Dushin, “Enhancement of technological possibilities of mill SRVP-130,” Titan, No. 1 (22), 61–64 (2008).Google Scholar
  7. 7.
    R. R. Boyer, G. Welsch, and E. W. Collings, Materials Properties Handbook: Titanium Alloys (ASM Int., Metals Park, Ohio, 1994).Google Scholar
  8. 8.
    Q. Contrepois, M. Carton, and J. Lecomte-Beckers, “Characterization of the β phase decomposition in Ti-5Al-5Mo-5V-3Cr at slow heating rates,” OJ. Metal 1(1), 1–11 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Carton, P. Jacques, N. Clément, and J. Lecomte-Beckers, “Study of transformations and microstructural modifications in Ti-LCB and Ti-555 alloys using differential scanning calorimetry,” in: Ti-2007 Science and Technology, Ed. by M. Nimoni, S. Akiyama, M. Ikeda, M. Hagiwara, and K. Maruyama (The Japan Institute of Metals, 2007), vol. 1, pp. 491–494.Google Scholar
  10. 10.
    S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, and H. L. Fraser, “ω-assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy,” Acta Mater. 57, 2136–2147 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. A. Bykov
    • 1
  • T. V. Kulikova
    • 1
  • L. B. Vedmid’
    • 1
  • A. Ya. Fishman
    • 1
  • K. Yu. Shunyaev
    • 1
  • N. Yu. Tarenkova
    • 2
  1. 1.Institute of Metallurgy, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.OAO VSMPO-AVISMAVerkhnyaya Salda, Sverdlovsk obl.Russia

Personalised recommendations