Advertisement

The Physics of Metals and Metallography

, Volume 115, Issue 3, pp 257–267 | Cite as

Magnetic phase transitions in ferrimagnetic DyFe5Al7 near the compensation point

  • N. V. Mushnikov
  • E. V. Rozenfel’d
  • D. I. Gorbunov
  • A. V. Andreev
Electrical and Magnetic Properties
  • 90 Downloads

Abstract

The magnetization curves of single-crystal DyFe5Al7 have been measured along the main crystal-lographic directions in the magnetically ordered state. The temperature dependences of the magnetic moments of the Dy and Fe sublattices and the parameter of the intersublattice exchange have been determined in the model of molecular field. Upon the measurements along the easy axis, jumps of magnetization, the values and critical fields of which strongly depend on temperature, have been revealed near the temperature of magnetic compensation. A model of the magnetization of a ferrimagnet with two magnetic sublattices coupled by weak intersublattice exchange has been suggested. Using this model, analytical expressions for the magnetization curve and critical field of the spin-reorientation transition have been obtained. A magnetic phase diagram has been constructed and magnetic structures that are realized in different fields at different temperatures have been determined. The generalization of the model to the case of a noncollinear Fe sublattice has been generalized.

Keywords

rare-earth intermetallic compounds ferrimagnetism compensation temperature magnetic anisotropy magnetic phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. H. J. Buschow, “Magnetism and processing of permanent magnet materials,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 1997), vol. 10, pp. 463–593.Google Scholar
  2. 2.
    K. H. J. Buschow, D. B. de Mooij, M. Brouha, H. H. Smit, and R. C. Thiel, “Magnetic properties of ternary Fe-rich rare earth intermetallic compounds,” IEEE Trans. Magn. 24, 1611–1616 (1988).CrossRefGoogle Scholar
  3. 3.
    X. C. Kou, T. S. Zhao, R. Grössinger, H. R. Kirchmayr, X. Li, and F. R. de Boer, “Magnetic phase transitions, magnetocrystalline anisotropy, and crystal-field interactions in the RFe11Ti series (where R = Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, or Tm),” Phys. Rev. B: Condens. Matter 47, 3231–3242 (1993).CrossRefGoogle Scholar
  4. 4.
    A. V. Andreev, A. N. Bogatkin, N. V. Kudrevatykh, S. S. Sigaev, and E. N. Tarasov, “High anisotropic rare earth RFe12 − xMx,” Phys. Met. Metallogr. 68(1), 68–75 (1989).Google Scholar
  5. 5.
    I. Felner, I. Nowik, and M. Seh, “Ferrimagnetism and hyperfine interactions in RFe5Al7 (R = rare earth),” J. Magn. Magn. Mater. 38, 172–182 (1983).CrossRefGoogle Scholar
  6. 6.
    W. Kockelmann, W. Shäfer, G. Will, P. Fischer, and J. Gal, “Neutron diffraction study of the ferrimagnetic structures of RFe5Al7 compounds with R = Tb, Dy, Ho, Er, Tm,” J. Alloys Compd. 207/208, 311–315 (1994).CrossRefGoogle Scholar
  7. 7.
    O. Moze, R. M. Ibberson, and K. H. J. Buschow, “On the preferential site occupation of Fe in RFe4Al8 and related compounds,” J. Phys.: Condens. Matter 2, 1677–1682 (1990).Google Scholar
  8. 8.
    D. I. Gorbunov, A. V. Andreev, S. Daniš, and J. Pospišil, “Evolution of magnetism in LuFexAl12 − x (4 ≤ x ≤ 6) single crystals,” J. Alloys Compd. 563, 63–71 (2013).CrossRefGoogle Scholar
  9. 9.
    D. I. Gorbunov, A. V. Andreev, and N. V. Mushnikov, “Magnetic properties of a DyFe5Al7 single crystal,” J. Alloys Compd. 514, 120–126 (2012).CrossRefGoogle Scholar
  10. 10.
    M. D. Kuz’min, “High-field low-temperature magnetization curves of anisotropic ferrimagnets,” J. Magn. Magn. Mater. 323, 1068–1082 (2011).CrossRefGoogle Scholar
  11. 11.
    M. D. Kuz’min, Y. Skourski, K. P. Skokov, and K.-H. Müller, “High-field magnetization measurements on Er2Fe17 single crystal,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 184439 (2007).CrossRefGoogle Scholar
  12. 12.
    A. K. Zvezdin and A. F. Popkov, “Magnetic phase diagrams of cubic ferrimagnets,” Fiz. Met. Metalloved. 44, 686–697 (1977).Google Scholar
  13. 13.
    A. K. Zvezdin and A. F. Popkov, “Magnetic phase diagrams of hexagonal ferrimagnets near compensation temperature,” Fiz. Met. Metalloved. 50, 242–253 (1980).Google Scholar
  14. 14.
    A. V. Andreev, “Magnetic anisotropy of UFe6Al6,” Physica B 404, 2978–2980 (2009).CrossRefGoogle Scholar
  15. 15.
    J. P. Liu, F. R. de Boer, P. F. de Châtel, R. Coehoorn, and K. H. J. Buschow, “On the 4f-3d exchange interaction in intermetallic compounds,” J. Magn. Magn. Mater. 132, 159–179 (1994).CrossRefGoogle Scholar
  16. 16.
    D. I. Gorbunov, M. D. Kuz’min, K. Uhlířová, M. Žáček, M. Richter, Y. Skourski, and A. V. Andreev, “Magnetic properties of a GdMn6Sn6 single crystal,” J. Alloys Compd. 519, 47–54 (2012).CrossRefGoogle Scholar
  17. 17.
    E. A. Tereshina, I. S. Tereshina, M. D. Kuz’min, Y. Skourski, M. Doerr, O. D. Chistyakov, I. V. Telegina, and H. Drulis, “Variation of the intersublattice exchange coupling due to hydrogen absorption in Er2Fe14B: A high-field magnetization study,” J. Appl. Phys. 111, 093923 (2012).CrossRefGoogle Scholar
  18. 18.
    D. I. Gorbunov, A. V. Andreev, Y. Skourski, and M. D. Kuz’min, “High-field magnetization of a DyFe5Al7 single crystal,” J. Alloys Compd. 553, 358–363 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. V. Mushnikov
    • 1
  • E. V. Rozenfel’d
    • 1
  • D. I. Gorbunov
    • 2
    • 3
  • A. V. Andreev
    • 2
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
  3. 3.Department of Physics of Condensed Matter, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations