Advertisement

The Physics of Metals and Metallography

, Volume 114, Issue 13, pp 1087–1122 | Cite as

First principles electronic structure calculation and simulation of the evolution of radiation defects in plutonium by the density functional theory and the molecular dynamics approach

  • V. I. Anisimov
  • V. V. Dremov
  • M. A. Korotin
  • G. N. Rykovanov
  • V. V. Ustinov
Article

Abstract

The review is devoted to the description of fundamental properties of Pu based on ab initio and classical molecular-dynamics microscopic theories which could be linked to each other. The details of various methods such as LSDA, LDA + U, LDA + U + SO, LDA + DMFT, CMD, MEAM, and GEAM are presented. The results obtained in the framework of these approaches are discussed.

Keywords

plutonium electronic structure LDA LDA + U LDA + U + SO LDA + DMFT Hubbard bands quasiparticle peak molecular dynamics Pu aging helium bubbles radiation-damage cascades 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Smith and E. A. Kmetko, “Magnetism and bonding: A nearly periodic table of transition elements,” J. Less-Common Metals 90, 83–88 (1983).CrossRefGoogle Scholar
  2. 2.
    P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864–B871 (1964).CrossRefGoogle Scholar
  3. 3.
    W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140, A1133–A1138 (1965).CrossRefGoogle Scholar
  4. 4.
    V. I. Anisimov, J. Zaanen, and O. K. Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44, 943–954 (1991).CrossRefGoogle Scholar
  5. 5.
    V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, and G. Kotliar, “First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory,” J. Phys.: Condens. Matter 9, 7359–7367 (1997).Google Scholar
  6. 6.
    V. I. Anisimov and O. Gunnarsson, “Density-functional calculation of effective Coulomb interactions in metals,” Phys. Rev. B 43, 7570–7574 (1991).CrossRefGoogle Scholar
  7. 7.
    V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, “Full orbital calculation scheme for materials with strongly correlated electrons,” Phys. Rev. B 71, 125119 (2005).CrossRefGoogle Scholar
  8. 8.
    D. C. Wallace, “Electronic and phonon properties of six crystalline phases of Pu metal,” Phys. Rev. B 58, 15433–15439 (1998).CrossRefGoogle Scholar
  9. 9.
    A. J. Arko, J. J. Joyce, L. A. Morales, J. H. Terry, and R. K. Schulze, “Photoelectron spectroscopy of α- and δ-plutonium,” Los Alamos Sci. 26, 168 (2000).Google Scholar
  10. 10.
    A. J. Arko, J. J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, “Electronic structure of α- and δ-Pu from photoelectron spectroscopy,” Phys. Rev. B 62, pp. 1773–1779 (2000).CrossRefGoogle Scholar
  11. 11.
    J. Terry, R. K. Schulze, J. Lashley, J. D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D. K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, “5f resonant photoemission from plutonium,” Surf. Sci. 499, L141–L147 (2002).CrossRefGoogle Scholar
  12. 12.
    J. R. Naegele, L. Manes, J. C. Spirlet, and W. Müller, “Localization of 5f electrons in americium: A photoe-mission study,” Phys. Rev. Lett. 52, pp. 1834–1837 (1984).CrossRefGoogle Scholar
  13. 13.
    J. R. Naegele, J. Ghijsen, and L. Manes, Structure and Bonding. Vol. 59/60, Actinides-Chemistry and Physical Properties, Ed. by L. Manes (Springer-Verlag, Berlin, 1985), p. 197.Google Scholar
  14. 14.
    L. Havela, T. Gouder, F. Wastin, and J. Rebizant, “Photoelectron spectroscopy study of the 5f localization in Pu,” Phys. Rev. B 65, 235118 (2002).CrossRefGoogle Scholar
  15. 15.
    J. G. Tobin, B. W. Chung, R. K. Schulze, J. Terry, J. D. Farr, D. K. Shuh, K. Heinzelman, E. Rotenberg, G. D. Waddill, and G. van der Laan, “Resonant photoemission in f-electron systems: Pu and Gd,” Phys. Rev. B 68, 155109 (2003).CrossRefGoogle Scholar
  16. 16.
    Plutonium Handbook: A Guide to the Technology, Ed. by O.J. Wick (American Nuclear Society, LaGrange Park, IL, 1980).Google Scholar
  17. 17.
    J. C. Lashley, J. Singleton, A. Migliori, J. B. Betts, R. A. Fisher, J. L. Smith, and R. J. McQueeney, “Experimental electronic heat capacities of α- and δ-plutonium: Heavy-fermion physics in an element,” Phys. Rev. Lett. 91, 205901 (2003).CrossRefGoogle Scholar
  18. 18.
    J. C. Lashley, A. C. Lawson, R. J. McQueeney, and G. H. Lander, “Absence of magnetic moments in plutonium,” Phys. Rev. B 72, 054416 (2005).CrossRefGoogle Scholar
  19. 19.
    S. S. Hecker, D. R. Harbur, and T. G. Zocco, “Phase stability and phase transformations in Pu-Ga alloys,” Prog. Mater. Sci. 49, 429–485 (2004).CrossRefGoogle Scholar
  20. 20.
    Challenges in Plutonium Science, Ed. by N.G. Cooper, Los Alamos Sci. 26, (LANL, Los Alamos, NM, 2000).Google Scholar
  21. 21.
    M. I. Baskes, “Atomistic model of plutonium,” Phys. Rev. B 62, 15532–15537 (2000).CrossRefGoogle Scholar
  22. 22.
    M. I. Baskes, A. C. Lowson, and S. M. Valone, “Lattice vibrations in δ-plutonium: Molecular dynamics calculation,” Phys. Rev. B 72, 014129 (2005).CrossRefGoogle Scholar
  23. 23.
    S. M. Valone, M. I. Baskes, and R. L. Martin, “Atomistic model of helium bubbles in gallium-stabilized plutonium alloys,” Phys. Rev. B 73, 214209 (2006).CrossRefGoogle Scholar
  24. 24.
    M. I. Baskes, S. Y. Hu, S. M. Valone, G. F. Wang, and A. C. Lawson, “Atomistic simulations of Ga atom ordering in Pu 5 at. % Ga alloys,” J. Comput.-Aided Mater. Des. 14, 379–388 (2007).CrossRefGoogle Scholar
  25. 25.
    V. V. Dremov, F. A. Sapozhnikov, S. I. Samarin, D. G. Modestov, and N. E. Chizhkova, “Monte Carlo + molecular dynamics modeling of radiation damages in Pu,” J. Alloys Compd. 444–445, 197–201 (2007).CrossRefGoogle Scholar
  26. 26.
    V. V. Dremov, A. V. Karavaev, S. I. Samarin, F. A. Sapozhnikov, D. L. Preston, and M. A. Zocher, “Molecular dynamics characterization of thermodynamic and mechanical properties of Pu as dependent upon alloying additions and defects concentration. Part I,” J. Nucl. Mater. 385, 79–82 (2009).CrossRefGoogle Scholar
  27. 27.
    B. P. Uberuaga, S. M. Valone, and M. I. Baskes, “Accelerated dynamics study of vacancy mobility in δ-plutonium,” J. Alloys Compd. 444–445, 314–319 (2007).CrossRefGoogle Scholar
  28. 28.
    V. V. Dremov, A. L. Kutepov, F. A. Sapozhnikov, V. I. Anisimov, M. A. Korotin, A. O. Shorikov, D. L. Preston, and M. A. Zocher, “Atomistic simulations of helium dynamics in a plutonium lattice,” Phys. Rev. B 77, 224306 (2008).CrossRefGoogle Scholar
  29. 29.
    V. V. Dremov, A. V. Karavaev, F. Sapozhnikov, M. A. Vorobyova, D. Preston, and M. Zocher, “Molecular dynamics evaluation of the impact of Ga, He, and vacancy concentration on the mechanical properties of Ga-stabilized δ-Pu,” J. Nucl. Mater. 414, 471–478 (2011).CrossRefGoogle Scholar
  30. 30.
    M. Richter, in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (Elsevier, Amsterdam, 2001), Vol. 13, p. 87.Google Scholar
  31. 31.
    I. V. Solovyev, A. I. Liechtenstein, V. A. Gubanov, V. P. Antropov, and O. K. Andersen, “Spin-polarized relativistic linear-muffin-tin-orbital method: Volume-dependent electronic structure and magnetic moment of plutonium,” Phys. Rev. B 43, 14414–14422 (1991).CrossRefGoogle Scholar
  32. 32.
    J. van Ek, P. A. Sterne, and A. Gonis, “Phase stability of plutonium,” Phys. Rev. B 48, 16280–16289 (1993).CrossRefGoogle Scholar
  33. 33.
    P. Söderlind, J. M. Wills, B. Johansson, and O. Eriksson, “Structural properties of plutonium from first-principles theory,” Phys. Rev. B 55, 1997–2004 (1997).CrossRefGoogle Scholar
  34. 34.
    M. D. Jones, J. C. Boettger, R. C. Albers, and D. J. Singh, “Theoretical atomic volumes of the light actinides,” Phys. Rev. B 61, 4644–4650 (2000).CrossRefGoogle Scholar
  35. 35.
    P. Söderlind, “Theory of the crystal structures of cerium and the light actinides,” Adv. Phys. 47, 959–998 (1998).CrossRefGoogle Scholar
  36. 36.
    P. Söderlind and B. Sadigh, “Density-functional calculations of α, β, γ, δ, δ′, and ɛ plutonium.” Phys. Rev. Lett. 92, 185702 (2004).CrossRefGoogle Scholar
  37. 37.
    G. Robert, A. Pasturel, and B. Siberchicot, “Calculated thermodynamic properties of plutonium metal,” J. Phys.: Condens. Matter 15, 8377–8388 (2003).Google Scholar
  38. 38.
    B. Sadigh, P. Söderlind, and W. G. Wolfer, “Geometry and electronic structure of α-Pu: A theoretical study,” Phys. Rev. B 68, 241101 (2003).CrossRefGoogle Scholar
  39. 39.
    J. Bouchet, R. C. Albers, M. D. Jones, and G. Jomard, “New Pseudophase Structure for α-Pu,” Phys. Rev. Lett. 92, 095503 (2004).CrossRefGoogle Scholar
  40. 40.
    P. Söderlind, O. Eriksson, B. Johansson, and J. M. Wills, “Electronic properties of f-electron metals using the generalized gradient approximation,” Phys. Rev. B 50, 7291–7294 (1994).CrossRefGoogle Scholar
  41. 41.
    J. M. Wills and O. Eriksson, “Crystal-structure stabilities and electronic structure for the light actinides Th, Pa, and U,” Phys. Rev. B 45, 13879–13890 (1992).CrossRefGoogle Scholar
  42. 42.
    G. W. Fernando, E. H. Sevilla, and B. R. Cooper, “Theoretical study of relativistic effects in the electronic structure of Pu.” Phys. Rev. B 61, 12562–12565 (2000).CrossRefGoogle Scholar
  43. 43.
    L. Nordström, J. M. Wills, P. H. Andersson, P. Söderlind, and O. Eriksson, “Spin-orbit coupling in the actinide elements: A critical evaluation of theoretical equilibrium volumes,” Phys. Rev. B 63, 035103 (2001)CrossRefGoogle Scholar
  44. 44.
    M. F. Islam and A. K. Ray, “On the interplay between spin polarization, orbital polarization and spin-orbit coupling in actinides from Pa to Cm,” J. Comput. Theor. Nanosci. 6, 1458–1467 (2009).CrossRefGoogle Scholar
  45. 45.
    J. G. Tobin, K. T. Moore, B. W. Chung, M. A. Wall, A. J. Schwartz, G. van der Laan, and A. L. Kutepov, “Competition between delocalization and spin-orbit splitting in the actinide 5f states,” Phys. Rev. B 72, 085109 (2005).CrossRefGoogle Scholar
  46. 46.
    L. Petit, A. Svane, Z. Szotek, P. Strange, H. Winter, and W. M. Temmerman, “Simple rules for determining valencies of f-electron systems,” J. Phys.: Condens. Matter 13, 8697–8707 (2001).Google Scholar
  47. 47.
    A. Svane, L. Petit, Z. Szotek, and W. M. Temmerman, “Self-interaction-corrected local spin density theory of 5f electron localization in actinides,” Phys. Rev. B 76, 115116 (2007).CrossRefGoogle Scholar
  48. 48.
    L. Petit, A. Svane, Z. Szotek, W. M. Temmerman, and G. M. Stocks, “Self-interaction corrected local spin density calculations of actinides,” IOP Conference Series: Materials Science and Engineering 9, 012084 (2010).CrossRefGoogle Scholar
  49. 49.
    S. W. Yu, J. G. Tobin, and P. Söderlind, “An alternative model for electron correlation in Pu,” J. Phys.: Condens. Matter 20, 422002 (2008).Google Scholar
  50. 50.
    O. Eriksson, J. D. Becker, A. V. Balatsky, and J. M. Wills, “Novel electronic configuration in δ-Pu,” J. Alloys Compd. 287, 1–5 (1999).CrossRefGoogle Scholar
  51. 51.
    A. L. Kutepov, “The effect of exact calculation of exchange interaction upon calculated electronic structure of actinides,” J. Alloys Compd. 444–445, 174–176 (2007).CrossRefGoogle Scholar
  52. 52.
    S. Y. Savrasov and G. Kotliar, “Ground state theory of δ-Pu,” Phys. Rev. Lett. 84, 3670–3673 (2000).CrossRefGoogle Scholar
  53. 53.
    A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, and V. I. Anisimov, “Magnetic state and electronic structure of the δ and α phases of metallic Pu and its compounds,” Phys. Rev. B 72, 024458 (2005).CrossRefGoogle Scholar
  54. 54.
    M. A. Korotin, A. O. Shorikov, V. I. Anisimov, V. V. Dryomov, and Ph. A. Sapozhnikov, “Influence of interstitial impurity and vacancy on δ-Pu magnetic state: ab-initio investigation,” in Int. Top. Conf. on Plutonium and Actinides “Plutonium Futures: The Science 2006”, Abstracts (Asilomar, Pacific Groves, Ca., 2006), p. 160.Google Scholar
  55. 55.
    A. V. Lukoyanov, A. O. Shorikov, V. B. Bystrushkin, A. A. Dyachenko, L. R. Kabirova, Yu. Yu. Tsiovkin, A.A. Povzner, V. V. Dremov, M. A. Korotin, and V. I. Anisimov, “Electronic structure and magnetic state of transuranium metals under pressure,” J. Phys.: Condens. Matter 22, 495501 (2010).Google Scholar
  56. 56.
    A. B. Shick, V. Drchal, and L. Havela, “Coulomb-U and magnetic-moment collapse in δ-Pu,” Europhys. Lett. 69, 588–594 (2005).CrossRefGoogle Scholar
  57. 57.
    J. G. Tobin, P. Söderlind, A. Landa, K. T. Moore, A. J. Schwartz, B. W. Chung, M. A. Wall, J. M. Wills, R. G. Haire, and A. L. Kutepov, “On the electronic configuration in Pu: Spectroscopy and theory,” J. Phys.: Condens. Matter 20, 125204 (2008).Google Scholar
  58. 58.
    G. van der Laan and M. Taguchi, “Valence fluctuations in thin films and the α and δ phases of Pu metal determined by 4f core-level photoemission calculations,” Phys. Rev. B 82, 045114 (2010).CrossRefGoogle Scholar
  59. 59.
    J. P. Julien, R. C. Albers, and J. Bouchet, “Effect of spin-orbit coupling on an ab initio Gutzwiller approach for Pu,” J. Alloys Compd. 444–445, 285–287 (2007).CrossRefGoogle Scholar
  60. 60.
    S. P. Chen, “Correlation-induced anomalies and extreme sensitivity in fcc Pu,” Philos. Mag. 89, 1813–1822 (2009).CrossRefGoogle Scholar
  61. 61.
    F. Cricchio, F. Bultmark, and L. Nordström, “Exchange energy dominated by large orbital spin-currents in δ-Pu,” Phys. Rev. B 78, 100404 (2008).CrossRefGoogle Scholar
  62. 62.
    V. I. Anisimov, “Electron structure of compounds with strong electron correlations in the theory of dynamic mean field,” Phys. Met. Metallogr. 112, 682–710 (2011).CrossRefGoogle Scholar
  63. 63.
    S. Y. Savrasov, G. Kotliar, and E. Abrahams, “Correlated electrons in δ-plutonium within a dynamical mean-field picture,” Nature 410, 793–795 (2001).CrossRefGoogle Scholar
  64. 64.
    A. C. Lawson, J. A. Roberts, B. Martinez, M. Ramos, G. Kotliar, F. W. Trouw, M. R. Fitzsimmons, M. P. Hehlen, J. C. Lashley, H. Ledbetter, R. J. McQueeney, and A. Migliori, “Invar model for delta-phase Pu: Thermal expansion, elastic and magnetic properties,” Philos. Mag. 86, 2713–2733 (2006).CrossRefGoogle Scholar
  65. 65.
    L. V. Pourovskii, M. I. Katsnelson, A. I. Lichtenstein, L. Havela, T. Gouder, F. Wastin, A. B. Shick, V. Drchal, and G. H. Lander, “Nature of non-magnetic strongly-correlated state in δ-plutonium,” Europhys. Lett., 74, 479–485 (2006).CrossRefGoogle Scholar
  66. 66.
    A. Shick, J. Kolorenč, L. Havela, V. Drchal, and T. Gouder, “Multiplet effects in the electronic structure of δ-Pu, Am and their compounds,” Europhys. Lett. 77, 17003 (2007).CrossRefGoogle Scholar
  67. 67.
    L. V. Pourovskii, G. Kotliar, M. I. Katsnelson, and A. I. Lichtenstein, “Dynamical mean-field theory investigation of specific heat and electronic structure of α- and δ-plutonium,” Phys. Rev. B 75, 235107 (2007).CrossRefGoogle Scholar
  68. 68.
    J. H. Shim, K. Haule, and G. Kotliar, “Fluctuating valence in a correlated solid and the anomalous properties of δ-plutonium,” Nature 446, 513–516 (2007).CrossRefGoogle Scholar
  69. 69.
    J.-X. Zhu, A. K. McMahan, M. D. Jones, T. Durakiewicz, J. J. Joyce, J. M. Wills, and R. C. Albers, “Spectral properties of δ-plutonium: Sensitivity to 5f occupancy,” Phys. Rev. B 76, 245118 (2007).CrossRefGoogle Scholar
  70. 70.
    T. Björkman, O. Eriksson, and P. Andersson, “Coupling between the 4f core binding energy and the 5f valence band occupation of elemental Pu and Pu-based compounds,” Phys. Rev. B 78, 245101 (2008).CrossRefGoogle Scholar
  71. 71.
    V. I. Anisimov, A. O. Shorikov, and J. Kuneš, “Magnetic state and electronic structure of plutonium from “first principles” calculations,” J. Alloys Compd. 444–445, 42–49 (2007).CrossRefGoogle Scholar
  72. 72.
    M. A. Korotin, A. O. Shorikov, A. V. Lukoyanov, V. I. Anisimov, J. Kuneš, A. Landa, and M. J. Fluss, “Study of electron structure and spectral properties of plutonium according to the theory of dynamical mean field,” Proc. 7th Workshop on Fundamental Properties of Plutonium, Sarov, 2007, p. 91.Google Scholar
  73. 73.
    C. A. Marianetti, K. Haule, G. Kotliar, and M. J. Fluss, “Electronic coherence in δ-Pu: A dynamical mean-field theory study,” Phys. Rev. Lett. 101, 056403 (2008).CrossRefGoogle Scholar
  74. 74.
    E. Gorelov, J. Koloren, T. Wehling, H. Hafermann, A. B. Shick, A. N. Rubtsov, A. Landa, A. K. McMahan, V. I. Anisimov, M. I. Katsnelson, and A. I. Lichtenstein, “Importance of full Coulomb interactions for understanding the electronic structure of δ-Pu,” Phys. Rev. B 82, 085117 (2010).CrossRefGoogle Scholar
  75. 75.
    W. G. Wolfer, A. Kubota, P. Soderlind, A. Landa, B. Oudot, B. Sadigh, J. B. Sturgeon, and M. P. Surh, “Density changes in Ga-stabilized δ-Pu, and what they mean,” J. Alloys Compd. 444–445, 72–79 (2007).CrossRefGoogle Scholar
  76. 76.
    M. Robinson, S. D. Kenny, R. Smith, M. T. Storr, and E. McGee, “Simulating radiation damage in δ-plutonium,” Nucl. Instrum. Methods Phys. Res., Sect. B 267, 2967–2970 (2009).CrossRefGoogle Scholar
  77. 77.
    M. Robinson, S. D. Kenny, R. Smith, and M. T. Storr, “Simulating radiation damage in Ga stabilised δ-Pu,” Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2539–2548 (2011).CrossRefGoogle Scholar
  78. 78.
    L. Berlu, G. Jomard, G. Rosa, and P. Faure, “A plutonium α-decay defects production study through displacement cascade simulations with MEAM potential,” J. Nucl. Mater., 374, 344–353 (2008).CrossRefGoogle Scholar
  79. 79.
    M. T. Robinson and O. S. Oen, “The channeling of energetic atoms in crystal lattices,” Appl. Phys. Lett. 2, 30–32 (1963).CrossRefGoogle Scholar
  80. 80.
    M. T. Robinson and I. M. Torrens, “Computer simulation of atomic-displacement cascades in solids in the binary-collision approximation,” Phys. Rev. B 9, 5008–5024 (1974).CrossRefGoogle Scholar
  81. 81.
    J. F. Ziegler, TRIM-91 User Manual, IBM-Research, 28-0 Yorktown, N.Y. 10598 (1991).Google Scholar
  82. 82.
    A. Kubota, W. G. Wolfer, “Modeling radiation damage and aging effects in delta phase plutonium using molecular dynamic simulations,” Proc. 5th Int. Workshop “Fundamental plutonium properties”, Snezhinsk, 2005, p. 83.Google Scholar
  83. 83.
    W. G. Wolfer, Fundamental Plutonium Properties (VNIIEF, Sarov, 2003).Google Scholar
  84. 84.
    A. F. Akkerman, Modeling charged particles trajectories in matter (Energoatomizdat, Moscow, 1991).Google Scholar
  85. 85.
    S. I. Samarin and V. V. Dremov, “A hybrid model of primary radiation damage in crystals,” J. Nucl. Mater. 385, 83–87 (2009).CrossRefGoogle Scholar
  86. 86.
    R. L. Rose, J. L. Robbins, and T. B. Massalski, “Heat content and heat capacity of a Pu/1 wt % Ga delta-stabilized alloy at elevated temperatures,” J. Nucl. Mater. 36, 99–107 (1970).CrossRefGoogle Scholar
  87. 87.
    E. M. Bringa, A. Caro, Y. Wang, M. Victoria, J. M. McNaney, B. A. Remington, R. F. Smith, B. R. Torralva, and H. van Swygenhoven, “Ultrahigh strength in nanocrystalline materials under shock loading,” Science 309, 1838–1841 (2005).CrossRefGoogle Scholar
  88. 88.
    F. J. Andrew and P. J. Klemens, “Thermal conductivity and Lorenz number of plutonium and plutoniumgallium alloys,” Proc. 17th Int. Thermal Conductivity Conf., Ed. by J.G. Hust (Plenum, New York, 1983), p. 209.CrossRefGoogle Scholar
  89. 89.
    A. J. Schwartz, M. A. Wall, T. G. Zocco, and W. G. Wolfer, “Characterization and modeling of helium bubbles in self-irradiated plutonium alloys,” Philos. Mag. 85, 479–488 (2005).CrossRefGoogle Scholar
  90. 90.
    B. W. Chung, S. R. Thompson, C. H. Woods, D. J. Hopkins, W. H. Gourdin, and B. B. Ebbinghaus, “Density changes in plutonium observed from accelerated aging using Pu-238 enrichment,” J. Nucl. Mater. 355, 142–149 (2006).CrossRefGoogle Scholar
  91. 91.
    K. J. M. Blobaum, C. R. Krenn, M. A. Wall, T. B. Massalski, and A. J. Schwartz, “Evidence of embryo formation as a precursor to the delta to alphaprime transformation in a Pu-Ga alloy,” Mater. Res. Soc. Symp. Proc. 893, 169 (2005). DOI: 10.1557/PROC-0893-JJ04-06.Google Scholar
  92. 92.
    C. A. Calder, E. C. Draney, and W. W. Wilcox, “Noncontact measurement of the elastic constants of plutonium at elevated temperatures,” J. Nucl. Mater. 97, 126–136 (1981).CrossRefGoogle Scholar
  93. 93.
    M. I. Baskes, K. Muralidharan, M. Stan, S. M. Valone, and F. J. Cherne, “Using the modified embeddedatom method to calculate the properties of Pu-Ga alloys,” JOM 55(9), 41–50 (2003).CrossRefGoogle Scholar
  94. 94.
    S. S. Hecker, “Plutonium and its alloys: from atoms to microstructure,” Los Alamos Science, 26, 290–335 (2000).Google Scholar
  95. 95.
    H. M. Ledbetter and R. L. Moment, “Elastic Properties of face-centered cubic plutonium,” Acta Metall. 24, 891–899 (1976).CrossRefGoogle Scholar
  96. 96.
    A. Migliori, I. Mihut, J. B. Betts, M. Ramos, C. Mielke, C. Pantea, and D. Miller, “Temperature and time-dependence of the elastic moduli of Pu and Pu-Ga alloys,” J. Alloys Compd. 444–445, 133–137 (2007).CrossRefGoogle Scholar
  97. 97.
    B. W. Chung, S. R. Thompson, K. E. Lema, D. S. Hiromoto, and B. B. Ebbinghaus, “Evolving density and static mechanical properties in plutonium from self-irradiation,” J. Nucl. Mater. 385, 91–94 (2009).CrossRefGoogle Scholar
  98. 98.
    B. L. Holian and P. S. Lomdahl, “Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations,” Science 280, 2085–2088 (1998).CrossRefGoogle Scholar
  99. 99.
    V. V. Dremov, F. A. Sapozhnikov, M. A. Smirnova, A. V. Petrovtsev, D. L. Preston, and M. A. Zocher, “Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper,” Phys. Rev. B 74, 144110 (2006).CrossRefGoogle Scholar
  100. 100.
    M. Baskes, J. Nelson, and A. Wright, “Semiempirical modified embedded-atom potentials for silicon and germanium,” Phys. Rev. B 40, 6085–6100 (1989).CrossRefGoogle Scholar
  101. 101.
    S. M. Valone, M. I. Baskes, and S. P. Rudin, “Stacking fault energy in fcc plutonium with multiple reference states in the modified embedded atom method,” J. Nucl. Mater. 422, 20–26 (2012).CrossRefGoogle Scholar
  102. 102.
    G. V. Ionov, F. A. Sapozhnikov, V. V. Dremov, D. L. Preston, and M. A. Zocher, “The generalized embedded atom model of interatomic interaction and its application to α-Pu,” J. Nucl. Mater. 435, 10–16 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. I. Anisimov
    • 1
  • V. V. Dremov
    • 2
  • M. A. Korotin
    • 1
  • G. N. Rykovanov
    • 2
  • V. V. Ustinov
    • 1
  1. 1.Institute of Metal PhysicsRussian Academy of SciencesEkaterinburgRussia
  2. 2.All-Russia Research Institute of Technical PhysicsRussian Federal Nuclear CenterSnezhinsk, Chelyabinsk OblastRussia

Personalised recommendations