The Physics of Metals and Metallography

, Volume 114, Issue 8, pp 672–680 | Cite as

Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode

  • R. Krause-Rehberg
  • A. D. Pogrebnyak
  • V. N. Borisyuk
  • M. V. Kaverin
  • A. G. Ponomarev
  • M. A. Bilokur
  • K. Oyoshi
  • Y. Takeda
  • V. M. Beresnev
  • O. V. Sobol’
Structure, Phase Transformations, and Diffusion


Multicomponent nanostructured (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition method have been studied using several complementary methods of elemental and structural analysis, such as those based on the use of slow positron beam (SPB); proton microbeam (μ-PIXE); electron micro- and nanobeam (EDS and SEM analysis); and X-ray diffraction phase analysis (XRD), including the a-sin2ϕ method of measuring the stress-strain state (X-ray tensometry). The elemental composition, microstructure, residual stresses in nanograins, and in-depth and surface distributions of defects and atoms, as well as the phase composition, stress-strain state, and texture of the coatings have been studied in a 3D representation. It has been found that creating a state of elastic stress-strain compression in the coating can significantly enhance its resistance to oxidation upon annealing. A redistribution of elements and defects (their aligning and segregation) due to diffusion and termination of spinodal segregation has been revealed near interfaces, around grains and subgrains, which occurred without a significant change in the average size of nanograins.


nanostructured coatings defects impurities segregation diffusion texture stresses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, “Structures and properties of hard and superhard nanocomposite coatings,” Phys. Usp. 52, 29–54 (2009).CrossRefGoogle Scholar
  2. 2.
    A. D. Pogrebnyak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, “Application of micro- and nano- probes to the analysis of small-sized 3D materials, nanosystems, and nanoobjects,” Phys. Usp. 55, 270–300 (2012).CrossRefGoogle Scholar
  3. 3.
    A. D. Pogrebnyak, V. M. Beresnev, A. A. Dem’yanenko, V. S. Baidak, F. F. Komarov, M. V. Kaverin, N. Makhmudov, and D. A. Kolesnikov, “Adhesive strength, superhardness, and the phase and elemental compositions of nanostructured coatings based on Ti-Hf-Si-N,” Phys. Solid State 54, 1882–1890 (2012).CrossRefGoogle Scholar
  4. 4.
    A. D. Pogrebnyak, O. V. Sobol’, V. M. Beresnev, P. V. Turbin, S. N. Dub, G. V. Kirik, and A. E. Dmitrenko, “Features of the structural state and mechanical properties of ZrN and Zr(Ti)-Si-N coatings obtained by ion-plasma deposition technique,” Tech. Phys. Lett. 35, 925–928 (2009).CrossRefGoogle Scholar
  5. 5.
    V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier, and P. Gillon, “Complex structure/composition relationship in thin films of AlCoCrCuFeNi high entropy alloy,” Mater. Chem. Phys. 117, 142–147 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Tsai, C. Wang, C. Tsai, W. Shen, J. Yeh, J. Gan, and W. Wu, “Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization,” J. Electrochem. Soc. 158, H1161–H1165 (2011).CrossRefGoogle Scholar
  7. 7.
    A. Li and X. Zhang, “Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements,” Acta Metall. Sin. (English Letters) 22, 219–224 (2009).CrossRefGoogle Scholar
  8. 8.
    S. A. Firstov, V. F. Gorban’, N. A. Krapivka, and E. P. Pechkovskii, “Strengthening and mechanical properties of cast high-entropy alloys,” Kompoz. Nanostrukt. No. 2, 5–20 (2011).Google Scholar
  9. 9.
    A. D. Pogrebnjak, V. V. Uglov, M. V. Il’yashenko, V. M. Beresnev, A. P. Shpak, M. V. Kaverin, N. K. Erdybaeva, Yu. A. Kunitskyi, Yu. N. Tyurin, O. V. Kolisnichenko, N. A. Makhmudov, and A. P. Shypylenko, “Nano-microcomposite and combined coatings on Ti-Si-NAA/C-Co-Cr/Steel and Ti-Si-N/(Cr3C2)75-(NiCr)25Base: Their structure and properties,” Ceram. Eng. Sci. Proc. 31(7), 115–126 (2010).CrossRefGoogle Scholar
  10. 10.
    O. V. Sobol’, A. D. Pogrebnyak, and V. M. Beresnev, “Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-arc Zr-Ti-Si-N coatings,” Phys. Met. Metallogr. 112, 188–195 (2011).CrossRefGoogle Scholar
  11. 11.
    J. Musil, J. Vlcek, and P. Zeman, “Hard amorphous nanocomposite coatings with oxidation resistance above 1000°C,” Adv. Appl. Ceram. 107, 148–154 (2008).CrossRefGoogle Scholar
  12. 12.
    A. D. Korotaev, V. D. Borisov, V. Yu. Moshkov, C. V. Ovchinnikov, Yu. P. Pinzhin, and A. N. Tyumentsev, “Elastic stress state in superhard multielement coatings,” Phys. Mesomech. 12, 269–279 (2009).CrossRefGoogle Scholar
  13. 13.
    A. D. Korotaev, D. P. Borisov, D. Yu. Moshkov, S. V. Ovchinnikov, K. V. Oskomov, Yu. P. Pinzhin, V. M. Savostikov, and A. N. Tyumentsev, “Nanocomposite and nanostructured superhard Ti-Si-B-N coatings,” Russ. Phys. J. 50, 969–979 (2007).CrossRefGoogle Scholar
  14. 14.
    O. V. Sobol’, A. A. Andreev, V. F. Gorban’, N. A. Krapivka, V. A. Stolbovoi, I. V. Serdyuk, and V. E. Fil’chikov, “Reproducibility of the single-phase structural state of the multielement high-entropy Ti-V-Zr-Nb-Hf system and related superhard nitrides formed by the vacuum-arc method, Tech. Phys. Lett. 38, 616–619 (2012).CrossRefGoogle Scholar
  15. 15.
    I. V. Blinkov, A. O. Volkhonskii, V. N. Anikin, M. I. Petrzhik, and D. E. Derevtsova, “Phase composition and properties of wear resistant Ti-Al-Cr-Zr-Nb-N coatings manufactured by the arc-physical deposition method,” Inorg. Mater.: Appl. Res. 2, 285–291 (2011).CrossRefGoogle Scholar
  16. 16.
    Lin, Shao-Yi, Chang, Shou-Yi, Huang, Yi-Chung, Shieu, Fuh-Sheng, and Yeh., Jien-Wei, “Mechanical performance and nanoindenting deformation of (AlCrTa-TiZr)NCy multi-component coatings co-sputtered with bias,” Surf. Coat. Technol. 206, 5096–5102 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Musil, “Hard nanocomposite coatings: Thermal stability and toughness,” Surf. Coat. Technol. 207, 50–65 (2012).CrossRefGoogle Scholar
  18. 18.
    A. D. Pogrebnjak and V. M. Beresnev, Nanocoatings Nanosystems Nanotechnologies (Bentham e Books, 2012).Google Scholar
  19. 19.
    A. D. Pogrebnjak, A. P. Shpak, V. M. Beresnev, D. A. Kolesnikov, Yu. A. Kunitsky, O. V. Sobol, V. V. Uglov, F. F. Komarov, A. P. Shypylenko, A. A. Demyanenko, V. S. Baidak, and V. V. Grudnitskii, J. Nanosci. Nanotechnol. 12, 9213–9219 (2012).CrossRefGoogle Scholar
  20. 20.
    Chang, Hui-Wen, Huang, Ping-Kang, Yeh, Jien-Wei, A. Davison, Tsau, Chun-Huai, and Yang, Chih-Chao, “Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multiprincipal component (AlCrMoSiTi)N coatings,” Surf. Coat. Technol. 202, 3360–3366 (2008).CrossRefGoogle Scholar
  21. 21.
    Lai, Chia-Han, Cheng, Keng-Hao, Lin, Su-Jein, and Yeh, Jein-Wei, “Mechanical and tribological properties of multi-element (AlCrTaTiZr)N coatings,” Surf. Coat. Technol. 202, 3732–3738 (2008).CrossRefGoogle Scholar
  22. 22.
    Lai, Chia-Han, Tsai, Ming-Hung, Lin, Su-Jien, and Yeh, Jein-Wei, “Influence of substrate temperature on structure and mechanical properties of multi-element (AlCrTaTiZr)N coatings,” Surf. Coat. Technol. 201, 6993–6998 (2007).CrossRefGoogle Scholar
  23. 23.
    Yeh, Jein-Wei, Chen, Yu-Liang, Lin, Su-Jein, and Chen, Swe-Kai, “High-entropy alloys-A new era of exploitation,” Mater. Sci. Forum 560, 1–9 (2007).CrossRefGoogle Scholar
  24. 24.
  25. 25.
    N. A. Azarenkov, O. V. Sobol’, A. D. Pogrebnyak, and V. M. Beresnev, Engineering of Vacuum-Plasma Coatings (Khark. Nat. Univ., Kharkov, 2011) [in Russian].Google Scholar
  26. 26.
    H.-E. Shaefer, “Investigation of thermal equilibrium vacancies in metals by positron annihilation,” Phys. Status Solidi A, 102, 47–65 (1987).CrossRefGoogle Scholar
  27. 27.
    S. V. Rempel’ and A. I. Gusev, “Surface segregation in decomposing carbide solid solutions,” JETP Lett. 88, 435–440 (2008).CrossRefGoogle Scholar
  28. 28.
    R. Wurschum, P. Farber, R. Dittmar, P. Scharwaechter, W. Frank, and H.-E. Schaefer, “Thermal vacancy formation and self-diffusion in intermetallic Fe3Si nanocrystallites of nanocomposite alloys,” Phys. Rev. Lett. 79, 4918–4921 (1997).CrossRefGoogle Scholar
  29. 29.
    V. I. Lavrent’ev, A. D. Pogrebnyak, and R. Shandrik, “Local surface segregations of implanted aluminum in weak-defected iron crystal,” Pis’ma Zh. Eksp. Teor. Fiz. 65, 86–89 (1997).Google Scholar
  30. 30.
    S. Veprek and M. G. J. Veprek-Heijman, “Limits to the preparation of superhard nanocomposites: Impurities, deposition and annealing temperature,” Thin Solid Films 522, 274–282 (2012).CrossRefGoogle Scholar
  31. 31.
    J. Musil, “Hard and superhard nanocomposite coatings,” Surf. Coat. Technol. 125, 322–330 (2000).CrossRefGoogle Scholar
  32. 32.
    A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (FIZMATLIT, Moscow, 2005) [in Russian].Google Scholar
  33. 33.
    R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors Defect Studies (Springer-Verlag, Berlin, 1999).CrossRefGoogle Scholar
  34. 34.
    A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, V. M. Beresnev, F. F. Komarov, S. S. Mel’nik, and M. V. Kaverin, “Effect of mass transfer and segregation on the formation of superhard nanostructured Ti-Hf-N(Fe) coatings,” Tech. Phys. Lett. 38, 623–626 (2012).CrossRefGoogle Scholar
  35. 35.
    P. Misaelides, A. Hadzidimitrion, F. Noli, E. Pavlidou, and A. D. Pogrebnjak, “Investigation of the characteristics and corrosion resistance of Al2O3/TiN coatings,” Appl. Surf. Sci. 252, 8043–8049 (2006).CrossRefGoogle Scholar
  36. 36.
    A. D. Pogrebnjak, O. V. Sobol, V. M. Beresnev, P. V. Turbin, G. V. Kirik, N. A. Makhmudov, M. V. Il’yashenko, A. P. Shypylenko, M. V. Kaverin, M. Yu. Tashmetov, A. V. Pshyk, “Phase Composition, Thermal Stability, Physical and Mechanical Properties of Superhard on Based Zr-Ti-Si-N Nanocomposite coatings,” Sci. Proc. Wiley 31(7), 127–138 (2010).Google Scholar
  37. 37.
    A. D. Pogrebnjak, Sh. M. Ruzimov, D. L. Alontseva, P. Zukowski, K. Karwat, C. Kozak, M. Kolasik, “Structure and properties of coatings on Ni base deposited using a plasma jet before and after electron a beam irradiation,” Vacuum. 81(10), 1243–1251 (2007).CrossRefGoogle Scholar
  38. 38.
    A. D. Pogrebnjak, O. G. Bakharev, N. A. Pogrebnjak, Jr., Yu. V. Tsvintarnaya, V. T. Shablja, R. Sandrik, A. Zecca, “Certain features of High-dose and Intensive Implantation of Al ions in Iron,” Phys. Letters A. 265(3), 225–232 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • R. Krause-Rehberg
    • 1
  • A. D. Pogrebnyak
    • 2
  • V. N. Borisyuk
    • 2
  • M. V. Kaverin
    • 2
  • A. G. Ponomarev
    • 3
  • M. A. Bilokur
    • 2
  • K. Oyoshi
    • 4
  • Y. Takeda
    • 4
  • V. M. Beresnev
    • 5
  • O. V. Sobol’
    • 6
  1. 1.Martin-Luther Universität Halle-WittenbergHalleGermany
  2. 2.Sumy State UniversitySumyUkraine
  3. 3.Institute of Applied PhysicsNational Academy of Sciences of UkraineSumyUkraine
  4. 4.National Institute of Materials ScienceTsukuba-city, IbarakiJapan
  5. 5.Karazin National Kharkov UniversityKharkovUkraine
  6. 6.National Technical University Kharkov Polytechnic InstituteKharkovUkraine

Personalised recommendations