Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-Arc Zr-Ti-Si-N coatings

  • O. V. Sobol’
  • A. D. Pogrebnyak
  • V. M. Beresnev
Strength and Plasticity

Abstract

Regularities of the formation of the phase and structural state and mechanical characteristics of vacuum-arc coatings produced by the evaporation of Zr-Ti-Si-N targets in a reactive nitrogen atmosphere have been studied. For the targets of compositions Zr 92.0 wt %, Ti 3.9 wt %, Si 4.1 wt %, and Zr 64.2 wt %, Ti 32.1 wt %, Si 3.7 % at a working pressure of the nitrogen atmosphere of 0.1-0.8 Pa and a potential at the substrate of −100 and −200 V, the formation of a single-phase crystalline state of the coatings (nitride of the solid solution of the components of the target) has been established. The size of crystallites is in the nanometer range (25–85 nm). An increase in the size of crystallites in the direction of the incidence of the film-forming particles (perpendicular to the growth plane) is favored by an increase in the bias potential from −100 to −200 V. The low heat conductivity of the metallic (Ti and Zr) components of the target leads to a significant content of a droplet phase when using the direct-flow regime of the vacuum-arc deposition and requires the employment of a technological scheme with a separation of the film-forming beams to increase the homogeneity of the high mechanical properties of the coatings. The use of film-forming beams separated from the droplet phase makes it possible to increase the homogeneity of the surface morphology of the coatings with the retention of a large index of plasticity (H/E = 0.8–0.9) and high hardness (33–37 GPa) of the material of the coating.

Keywords

vacuum-arc coating Zr-Ti-Si-N system X-ray diffraction analysis phase composition structure compressive stresses hardness 

References

  1. 1.
    O. Knotek, T. Leyendeker, and F. Jungblut, “On the Properties of Physically Vapour-Deposited Ti-Al-V-N Coatings,” Thin Solid Films 153, 83–90 (1987).CrossRefGoogle Scholar
  2. 2.
    F. Kauffmann, G. Dehm, V. Schier, A. Schattke, T. Beck, S. Lang, and E. Arzt, “Microstructural Size Effects on the Hardness of Nanocrystalline TiN/Amorphous-SiNx Coatings Prepared by Magnetron Sputtering,” Thin Solid Films 473, 114–122 (2005).CrossRefGoogle Scholar
  3. 3.
    H. Soderberg, M. Oden, J. M. Molina-Aldareguia, and L. Hultman, “Nanostructure Formation during Deposition of TiN/SiNx Nanomultilayer Films by Reactive Dual Magnetron Sputtering,” J. Appl. Phys. 97, 114327 (2005).CrossRefGoogle Scholar
  4. 4.
    I. Grimberg, V. N. Zhitomirky, R. L. Boxman, and S. Goldsmith, “Multicomponent Ti-Zr-N and Ti-Nb-N Coatings Deposited by Vacuum Arc,” Surf. Coat. Tech. 108–109, 154–159 (1998).CrossRefGoogle Scholar
  5. 5.
    O. Knotek, W. D. Munz, and T. Leyendeker, “Industrial Deposition of Binary, Ternary and Quaternary Nitrides of Titanium, Zirconium and Aluminium,” J. Vac. Sci. Technol. A 5(4), 2173–2179 (1987).CrossRefGoogle Scholar
  6. 6.
    D. Y. Wang, C. L. Cang, C. H. Hsu, and H. N. Lin, “Synthesis of (Ti, Zr)N Hard Coatings by Unbalanced Magnetron Sputtering,” Surf. Coat. Technol. 130, 64–68 (2000).CrossRefGoogle Scholar
  7. 7.
    A. P. Shpak, A. I. Nakonechnaya, Yu. A. Kunitskii, and O. V. Sobol’, Mechanical Properties of Titanium-Based Coatings (PTs IMF NANU, Kiev, 2005) [in Russian].Google Scholar
  8. 8.
    I. I. Aksenov, Vacuum Arc in Erosion Plasma Sources (NNTs KhFTI, Kharkov, 2005) [in Russian].Google Scholar
  9. 9.
    L. S. Palatnik, M. Ya. Fuks, and V. M. Kosevich, Mechanism of Formation and the Substructure of Condensed Films (Nauka, Moscow, 1972) [in Russian].Google Scholar
  10. 10.
    O. V. Sobol, E. A. Sobol, L. I. Gladkikh, and A. N. Gladkikh, “On the Mechanism of β-WC-α-W2C Transformation under Annealing in Magnetron-Sputtering Tungsten Carbide Films,” Funct. Mater. 9(3), 486–490 (2002).Google Scholar
  11. 11.
    O. V. Sobol’, A. D. Pogrebnyak, P. V. Turbin, et al., “Structure and Properties of Nanocrystalline Coatings in Zr-Ti-Si-N System Obtained by Vacuum Arc Evaporation with High-Frequency Stimulation,” Visn. Kharkov. Nat. Univ., Ser. Fiz., No. 914, 48–53 (2010).Google Scholar
  12. 12.
    O. V. Sobol’, “Phase Composition, Structure, and Stressed State of Tungsten Films Produced by Ion-Plasma Sputtering,” Fiz. Met. Metalloved. 91(1), 63–71 (2001) [Phys. Met. Metallogr. 91 (1), 60–68 (2001)].Google Scholar
  13. 13.
    L. I. Mirkin, X-ray Diffraction Control of Engineering Materials: A Handbook (Mashinostroenie, Moscow, 1979) [in Russian].Google Scholar
  14. 14.
    C. Y. Ho, R. W. Powel, and P. E. Liley, “Thermal Conductivity of the Elements,” J. Phys. Chem. Ref. Data 1(2), 279–425 (1972).CrossRefGoogle Scholar
  15. 15.
    A. P. Shpak, O. V. Sobol’, V. A. Tatarenko, Yu. A. Kunitskii, M. Yu. Barabash, D. S. Leonov, and V. A. Dement’ev, “Regularities of the Formation of Nonequilibrium Structure of Ion-Plasma Condensates of Quasi-Binary Carbide and Boride Systems,” Metallofiz. Noveishie Tekhnol. 30(4), 525–535 (2008).Google Scholar
  16. 16.
    O. V. Sobol’, “Mechanism of Formation of the Phase and Structural State of Condensates Produced by Ion Sputtering,” Fiz. Inzhener. Poverkhn. 6(1-2), 20–36 (2008).Google Scholar
  17. 17.
    A. D. Pogrebnjak, O. V. Sobol, V. M. Beresnev, P. V. Turbin, G. V. Kirik, N. A. Makhmudov, M. V. Il’yashenko, A. P. Shypylenko, M. V. Kaverin, M. Yu. Tashmetov, and A. V. Pshyk, “Phase Composition, Thermal Stability, Physical and Mechanical Properties of Superhard on Base Zr-Ti-Si-N Nanocomposite Coatings,” in Nanostructured Materials and Nanotechnologies IV: Ceramic Engineering and Science Proceedings 31(7), 127–138 (2010).CrossRefGoogle Scholar
  18. 18.
    O. V. Sobol’, E. A. Sobol’, and A. A. Podtelezhnikov, “Peculiarities of Texture Formation in Coatings Obtained from Ion-Plasma Beams,” Funct. Mater. 6(5), p. 868–876 (1999).Google Scholar
  19. 19.
    A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, “Structures and Properties of Hard and Superhard Nanocomposite Coatings,” Usp. Fiz. Nauk 179(1), 34–63 (2009) [Phys.-Usp. 52 (1), 29–54 (2009)].CrossRefGoogle Scholar
  20. 20.
    V. M. Beresnev, O. V. Sobol’, A. D. Pogrebnyak, P. V. Turbin, and S. V. Litovchenko, “Thermal Stability of the Phase Composition, Structure, and Stressed State of Ion-Plasma Condensates in the Zr-Ti-Si-N System,” Zh. Tekh. Fiz. 80(6), 117–120 (2010) [Tech. Phys. 55 (6), 871–873 (2010)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • O. V. Sobol’
    • 1
  • A. D. Pogrebnyak
    • 2
  • V. M. Beresnev
    • 3
  1. 1.National Technical University “Kharkov Polytechnical Institute”KharkovUkraine
  2. 2.Sumy Institute of Surface ModificationSumy State UniversitySumyUkraina
  3. 3.Research Physicotechnological Center, MES and NAS of UkraineKharkovUkraine

Personalised recommendations