The Physics of Metals and Metallography

, Volume 109, Issue 4, pp 337–346 | Cite as

Effect of alloying with iron on the electronic properties adnd structure of the Cu3Pd alloy

  • N. I. Kourov
  • V. G. Pushin
  • L. N. Buinova
  • A. V. Korolev
  • M. A. Korotin
  • Yu. V. Knyazev
  • N. G. Gokhfel’d
Electrical and Magnetic Properties


Variation of electrical and magnetic properties in atomically ordered Cu3Pd alloy as a result of a one-percent addition of iron atoms has been investigated. The rearrangement of the electronic structure upon transition from the binary Cu3Pd to a ternary alloy of composition Cu74.25Pd24.75Fe1 has been considered using energy-band calculations and measurements of optical properties. The characterization of the micro-structural state was carried out by the methods of transmission electron diffraction microscopy.

Key words

electronic structure optical properties electrical and magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Krivoglaz and A. A. Smirnov, The Theory of Order-Disorder in Alloys (Fizmatgiz, Moscow, 1958; Macdonald, London, 1964).Google Scholar
  2. 2.
    S. V. Starenchenko, E. V. Kozlov, and V. A. Starenchenko, Regularities of Thermal Order-Disorder Phase Transitions in Alloys with L1 2, L1 2(M), L1 2 (MM), and D1 a Superstructures (NTL, Tomsk, 2003).Google Scholar
  3. 3.
    D. Watanabe and S. Ogawa, “On the Superstructure of the Ordered Alloy Cu3Pd. 1. Electron Diffraction Study,” J. Phys. Soc. Jpn. 11(3), 226–239 (1956).CrossRefADSGoogle Scholar
  4. 4.
    M. Hirabayashi and S. Ogawa, “On the Superstructure of the Ordered Alloys Cu3Pd. X-ray Diffraction Study,” J. Phys. Soc. Jpn. 12(3), 259–271 (1957).CrossRefADSGoogle Scholar
  5. 5.
    H. Sato and R. S. Toth, “Effect of Additional Elements on the Period of CuAu II and the Origin of the Long-Period Superlattice,” Phys. Rev. 124(6), 1833–1847 (1961).CrossRefADSGoogle Scholar
  6. 6.
    H. Sato, “Application of the Epitaxial Film Technique to the Study of the Electron Structure of Certain Alloys,” in Single-Crystal Films, Ed. by M. H. Francombe and H. Sato (Macmillan, New York, 1964; Mir, Moscow, 1966).Google Scholar
  7. 7.
    E. M. Savitskii, V. P. Polyakova, and M. A. Tylkina, Palladium Alloys (Nauka, Moscow, 1967; Primary Services, New York, 1969).Google Scholar
  8. 8.
    M. J. Marcinkowski, “Theory and Direct Observation of the Antiphase Boundaries and Dislocations in Superstructures,” in Electron Microscopy and Strength of Crystals (Wiley, New York, 1963; Metallurgiya, Moscow, 1968), pp. 215–319 [in Russian].Google Scholar
  9. 9.
    L. N. Buinova, V. I. Syutkina, O. D. Shashkov, and E. S. Yakovleva, “Influence of Domain Size on Properties of Copper-Palladium Alloys,” Fiz. Met. Metalloved. 33(6), 1195–1206 (1972).Google Scholar
  10. 10.
    S. Takeda, J. Kulik, and D. Fontaine, “One-Dimensional Long Period Superstructure in Cu3Pd Observed by High-Resolution Electron Microscopy,” J. Phys. F.: Met. Phys. 18, 1387–1404 (1988).CrossRefADSGoogle Scholar
  11. 11.
    Phase Diagrams of Binary Metal Systems: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), Vol. 2, pp. 290–292 [in Russian].Google Scholar
  12. 12.
    V. V. Usov, Metal Science of Electrical Contacts (Gosenergoizdat, Moscow, 1963) [in Russian].Google Scholar
  13. 13.
    R. J. Foley, G. S. Root, and J. R. Hauber, et al., “Influence of Thermomechanical Treatment on the Tensile Properties of a Platinum 25 wt % Iridium Alloy,” U.S. Rept. UCRL-75630, 1974 (18 pp.); Abstract of paper in Platinum Met. Rev. 19 (2), 70 (1975).Google Scholar
  14. 14.
    V. M. Gryaznov, “Palladium-Based Alloys as Membrane Catalysts,” in Alloys of Precious Metals (Nauka, Moscow, 1977), pp. 48–51 [in Russian].Google Scholar
  15. 15.
    V. Shah, L. Yang, “Nanometre FCC Clusters versus Bulk BCC Alloys: The Structure of Cu-Pd Catalysts,” Philos. Mag. A 79(8), 2025–2049 (1999).CrossRefADSGoogle Scholar
  16. 16.
    E. V. Kozlov and V. M. Dement’ev, “Influence of Antiphase Boundaries on the Energy-Band Structure of Ordered Solid Solutions,” Fiz. Met. Metalloved. 35, 500–507 (1973).Google Scholar
  17. 17.
    V. D. Sukhanov and O. D. Shashkov, “Homogeneous Formation of Precipitating Phases in Ordered Alloys with Domain Boundaries,” Fiz. Met. Metalloved. 56(1), 165–170 (1983).Google Scholar
  18. 18.
    N. V. Volkenshtein, L. A. Ugodnikova, and Yu. N. Tsiovkin, “Effect of Small Additions of Iron and Cobalt on Electrical Properties of Palladium-Based Alloys,” in Precious Metals and Their Applications (Inst. Fiz. Metallov, Ural. Otd. Akad. Nauk SSSR, Sverdlovsk, 1971), pp. 159–164 [in Russian].Google Scholar
  19. 19.
    V. G. Pushin, V. P. Pilyugin, L. N. Buinova, et al., “Effect of Severe Plastic Deformation by Torsion and Heat Treatment on the Microstructure and Phase Transformations of Ordered Cu3Pd Alloy,” in Nanotechnology and Physics of Functional Nanocrystalline Materials (Ekaterinburg, 2005), Vol. 2, pp. 192–201 [in Russian].Google Scholar
  20. 20.
    N. I. Kourov, V. G. Pushin, A. V. Korolev, et al., “Electronic Properties and Crystal Structure of Orderable Cu3Pd Alloy,” Fiz. Met. Metalloved. 103(4), 1–9 (2007) [Phys. Met. Metallogr. 103 (4), 370–377 (2007)].Google Scholar
  21. 21.
    N. F. Mott, “The Electrical Resistivity of Liquid Transition Metals,” Philos. Mag. 6(68), 1013–1034 (1972).Google Scholar
  22. 22.
    Z. W. Lu, S. H. Wei, and A. Zunger, “Electronic Structure of Ordered and Disordered Cu3Au and Cu3Pd,” Phys. Rev. B: Condens. Matter 45(18), 10314–10330 (1992).ADSGoogle Scholar
  23. 23.
    D. A. Papaconstantopoulos, A. Gonis, and P. M. Laufer, “Tight-Binding Coherent-Potential Approximation Including Off-Diagonal Disorder,” Phys. Rev. B: Condens. Matter 40(18), 12196–12200 (1989).ADSGoogle Scholar
  24. 24.
    N. I. Kourov, “The Influence of the Crystalline Structure Inhomogeneities on the Electrical Resistance and the Thermoelectric Power of Cu3Au Alloys,” Fiz. Nizk. Temp. 18, 1253–1257 (1992).Google Scholar
  25. 25.
    S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).Google Scholar
  26. 26.
    Y. Sato, J. M. Sivertsen, and L. E. Toth, “Low-Temperature Specific-Heat Study of Cu-Pd Alloys,” Phys. Rev. B: Solid State, 1(4), 1402–1410 (1970).ADSGoogle Scholar
  27. 27.
    I. Wilkinson, R. J. Hughes, Zs. Major, et al., “Fermi Surface Nesting in Disordered Cu1 − xPdx Alloys,” Phys. Rev. Lett. 87 216401 (2001).CrossRefPubMedADSGoogle Scholar
  28. 28.
    O. K. Andersen, Z. Pawlowska, and O. Jepsen, “Illustration of the Linear-Muffin-Tin-Orbital Tight-Binding Representation: Compact Orbitals and Charge Density in Si,” Phys. Rev. B: Condens. Matter 34(8), 5253–5269 (1986).ADSGoogle Scholar
  29. 29.
    H. L. Skriver and H. P. Lengkeek, “Band Structure and Optical Properties of Ordered AuCu3,” Phys. Rev. B: Condens. Matter 19(2), 900–909 (1979).ADSGoogle Scholar
  30. 30.
    K. P. Gurov, Fundamentals of the Kinetic Theory (Nauka, Moscow, 1966) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • N. I. Kourov
    • 1
  • V. G. Pushin
    • 1
  • L. N. Buinova
    • 1
  • A. V. Korolev
    • 1
  • M. A. Korotin
    • 1
  • Yu. V. Knyazev
    • 1
  • N. G. Gokhfel’d
    • 1
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations