The Physics of Metals and Metallography

, Volume 109, Issue 3, pp 278–285

Deformation and fracture of single crystals of VKNA-type alloys at 1100–1250°C

  • D. P. Rodionov
  • D. I. Davydov
  • N. N. Stepanova
  • V. G. Pushin
  • Yu. I. Filippov
  • N. I. Vinogradov
  • Yu. N. Akshentsev
  • V. A. Sazonova
Strength and Plasticity
  • 37 Downloads

Abstract

A comparative study of the structure and mechanical properties of single-crystal samples 〈001〉 of VKNA-1V and VKNA-4U alloys (cast and after heat treatment) has been performed using tensile tests in a temperature range of 1100–1250°C. In the case of the VKNA-4U alloy, samples of different crystallographic orientations have also been tested. At 1100°C, recrystallization was observed near the zone of fracture. The basic mechanism of relaxation at 1200–1250°C was found to be dynamic recovery. At 1250°C, the strength properties of the VKNA-4U alloy are higher than those of the VKNA-1V alloy.

Key words

superalloy single crystals mechanical tests structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. B. Povarova, V. P. Buntushkin, N. K. Kazanskaya, and A. A. Drozdov, “Analysis of Creation Principles of High Temperature Nickel Superalloys and Alloys Based on the Ni3Al ([gamma′]-Phase) Intermetallic Compound,” Perspekt. Mater., No. 2, 10–19 (2005).Google Scholar
  2. 2.
    E. N. Kablov, O. A. Bazyleva, and M. A. Vorontsov, “A New Base for Creating Castable High-Temperature Superalloys,” Metalloved. Term. Obrab. Met., No. 8, 21–25 (2006) [Met. Sci. Heat Treat. 48 (7–8), 348–351 (2006)].Google Scholar
  3. 3.
    K. B. Povarova, N. K. Kazanskaya, V. P. Buntushkin, et al., “Thermal Structural Stability of an Ni3Al-Based Alloy and Its Application for Blades in Small Gas-Turbine Engines,” Izv. Ross. Akad. Nauk, Met., No. 3, 95–100 (2003) [Russ. Metall. (Metally), No.3, 269–274 (2003)].Google Scholar
  4. 4.
    E. N. Kablov, V. P. Buntushkin, O. A. Bazyleva, et al., “Heat-Resistant Alloys on the Base of Ni3Al Intermetallic Compound,” in Proc. of Int. Conf. on the S.T. Kishkin’s Scientific Ideas and Modern Materials Science, April 25–26, 2006 (VIAM, Moscow, 2006)Google Scholar
  5. 5.
    G. P. Grabovetskaya, Yu. R. Kolobov, E. V. Kozlov, et al., “Effect of Alloying by Renium on High-Temperature Creep of Heterophase Single-Crystal Heat Resistant Nickel Alloys on the Ni3Al Base,” Zh. Funkts. Mater. 1(8), 289–294 (2007).Google Scholar
  6. 6.
    N. N. Stepanova, V. A. Sazonova, D. P. Rodionov, et al., “High-Temperature X-ray Examination of 〈001〉 Single Crystals of the Ni3Al-Based Superalloy,” Fiz. Met. Metalloved. 84(6), 130–138 (1997) [Phys. Met. Metallogr. 84 (6), 655–662 (1997)].Google Scholar
  7. 7.
    N. D. Bakhteeva, “Peculiarities of Formation of Microstructure in Heat-Strength Alloys on the Base of Nickel at Thermal and Mechanical Impact,” Tekhn. Metallov, No. 7, 15–26 (2006).Google Scholar
  8. 8.
    V. I. Levit and M. A. Smirnov, High-Temperature Thermomechanical Treatment of Austenitic Steels and Alloys (Chelyabinsk. Gos. Tekhn. Univ., Chelyabinsk, 1995) [in Russian].Google Scholar
  9. 9.
    N. V. Kazantseva, N. I. Vinogradova, N. N. Stepanova, et al., “Structural Changes in Heat-Resistant EP-800 Alloy upon Dynamical Stress,” Deform. Razr. Mater., No. 8, 10–16 (2008).Google Scholar
  10. 10.
    A. B. Rinkevich, N. N. Stepanova, and A. M. Burkhanov, “Acoustical Properties of Ni3Al Single Crystals Alloyed with Cobalt and Niobium,” Fiz. Met. Metalloved. 102(6), 678–682 (2006) [Phys. Met. Metallogr. 102 (6), 632–636 (2006)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • D. P. Rodionov
    • 1
  • D. I. Davydov
    • 1
  • N. N. Stepanova
    • 1
  • V. G. Pushin
    • 1
  • Yu. I. Filippov
    • 1
  • N. I. Vinogradov
    • 1
  • Yu. N. Akshentsev
    • 1
  • V. A. Sazonova
    • 1
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations