The Physics of Metals and Metallography

, Volume 104, Issue 4, pp 335–345 | Cite as

Evolution of structural changes in nanocrystalline alloys with temperature

  • M. Miglierini
  • T. Kaňuch
  • M. Pavúk
  • Y. Jirásková
  • R. Zbořil
  • M. Mašláň
  • P. Švec


Structural features of the NANOPERM-type alloys Fe91 − x Mo8Cu1B x with x = 12, 15, and 17 have been investigated by Mössbauer spectroscopy. The room-temperature Mössbauer spectra of the as-quenched alloys are characteristic of disordered structural arrangement, but traces of bcc-Fe(Mo) as well as a FeMo2B2 phase have been revealed by X-ray diffraction in all the samples. These results have been confirmed by conversion-electron Mössbauer spectroscopy. The differences between the opposite sides of the ribbon-shaped samples have been shown to stem from structural distinctions. From the point of view of hyperfine interactions, the x = 12 sample exhibits paramagnetic behavior. With increasing x, a contribution from ferromagnetic regions appears gradually, thus leading to an increase in the magnetic ordering temperature in the as-quenched state. Partially crystallized samples have been prepared by controlled annealing of the original precursors for one hour at temperatures ranging from 330 to 650°C in a vacuum. The temperature of the onset of crystallization has been determined to be of 430, 450, and 470°C for x = 12, 15, and 17, respectively. During the first step of crystallization, bcc-Fe(Mo) nanosized grains are formed. Surface features of the samples investigated have also been characterized by using atomic force microscopy.

PACS numbers

76.80.+y 61.18.Fs 61.46.Hr 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bremers, O. Hupe, C. E. Hofmeister, et al., “The Huge Influence of Nanograins on the Magnetic Properties of Iron-Based Fe-Cu-Nb-B Nanocrystalline Alloys,” J. Phys.: Condens. Matter 17, 3197–3209 (2005).CrossRefGoogle Scholar
  2. 2.
    T. Liu, Z. X. Xu, and R. Z. Ma, “Structural Defects and Internal Stress Field Distribution in Nanocrystalline Fe73.5Cu1Nb3Si13.5B9,” J. Magn. Magn. Mater. 152, 365–369 (1996).CrossRefGoogle Scholar
  3. 3.
    T. Pradell, N. Clavaguera, J. Zhu, and M. T. Clavaguera-Mora, “A Mössbauer Study of the Nanocrystallization Process in Fe73.5CuNb3Si17.5B5 Alloy,” J. Phys.: Condens. Matter 7, 4129–4143 (1995).CrossRefGoogle Scholar
  4. 4.
    J. M. Grenèche and A. Slawska-Waniewska, “About the Interfacial Zone in Nanocrystalline Alloys,” J. Magn. Magn. Mater. 215–216, 264–267 (2000).CrossRefGoogle Scholar
  5. 5.
    V. Franco, C. F. Conde, J. S. Blázquez, et al., “Constant Magnetocaloric Response of Fe91−xMo8Cu1Bx Amorphous Alloys by Modifying the Fe/B Ratio.” J. Appl. Phys. [in press].Google Scholar
  6. 6.
    S. Akiyama, S. Nakagawa, and M. Naoe, “Electrically Conductive Layer of Wear-Resistant Fe-Mo-B Alloy for Protective Magnetic Recording Tape,” IEEE Trans. Magn. 27, 5094–5096 (1991).CrossRefGoogle Scholar
  7. 7.
    M. Paluga, P. Mrafko, P. Švec, et al., “The Effect of Substitution of Fe by Co on Rapidly Quenched (Fe-Co)MoCuB Amorphous Alloys,” Advances in Electrical and Electronic Engineering 4, 63–66 (2005).Google Scholar
  8. 8.
    C. F. Conde and A. Conde, “Microstructure and Magnetic Properties of Mo-Containing Nanoperm-Type Alloys,” J. Alloys Compounds [in press].Google Scholar
  9. 9.
    M. Miglierini, J. Degmová, T. Kaňuch, and J. M. Grenèche, “Temperature Dependence of Magnetic Microstructure in Fe76Mo8Cu1B15 Nanocrystalline Alloy,” Phys. Status Solidi A 201, 3280–3284 (2004).CrossRefGoogle Scholar
  10. 10.
    M. Miglierini, T. Kaňuch, P. Švec, et al., “Magnetic Microstructure of NANOPERM-Type Nanocrystalline Alloys,” Phys. Status Solidi B 243, 57–64 (2006).CrossRefGoogle Scholar
  11. 11.
    E. Illeková, D. Janičkovič, M. Miglierini, et al., “Influence of Fe/B Ratio on Thermodynamic Properties of Amorphous Fe-Mo-Cu-B,” J. Magn. Magn. Mater. 304, e636–e368 (2006).CrossRefGoogle Scholar
  12. 12.
    T. Žák and Y. Jirásková, “CONFIT: Mössbauer Spectra Fitting Program,” Surf. Interface Anal. 38, 710–714 (2006).CrossRefGoogle Scholar
  13. 13.
    M. Paluga, P. Švec, D. Janičkovič, et al. “Nanocrystallization in Rapidly Quenched Fe-Mo-Cu-B: Surface and Volume Effects,” J. Alloys Compd. [in press].Google Scholar
  14. 14.
    M. Miglierini “Modification and Characterization of Surfaces of Nanocrystalline Alloys,” in Nuclear and Radiation Physics, Vol. 1: Plenary Reports. Nuclear Physics, Ed. by K. K. Kadyrzhanov (OPNI INP NNC, Almaty, 2006), pp. 134–148.Google Scholar
  15. 15.
    M. Miglierini, T. Kaňuch, Y. Jirásková, et al., “Surface Properties of Fe76Mo8Cu1B15 Alloy after Annealing,” Hyperfine Interact. 165, 75–80 (2005).CrossRefGoogle Scholar
  16. 16.
    A.-T. Le, Ch.-O. Kim, N. Chau, et al., “Soft Magnetic Properties and Giant Magneto-Impedance Effect of Fe73.5 − xCrxSi13.5B9Nb3Au1 (x = 1–5) Alloys,” J. Magn. Magn. Mater. 307, 178–185 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • M. Miglierini
    • 1
    • 3
  • T. Kaňuch
    • 1
  • M. Pavúk
    • 1
  • Y. Jirásková
    • 2
  • R. Zbořil
    • 3
  • M. Mašláň
    • 3
  • P. Švec
    • 4
  1. 1.Slovak University of TechnologyBratislavaSlovakia
  2. 2.Institute of Physics of MaterialsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Centre for Nanomaterial ResearchOlomoucCzech Republic
  4. 4.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations