Advertisement

The Physics of Metals and Metallography

, Volume 104, Issue 3, pp 215–220 | Cite as

Calculation of the electronic structure of the vanadium dioxide VO2 in the monoclinic low-temperature phase M 1 using the generalized transition state method

  • A. V. Kozhevnikov
  • V. I. Anisimov
  • M. A. Korotin
Theory of Metals

Abstract

It is known that the ground state of the vanadium dioxide in the low-temperature monoclinic phase M 1 is a nonmagnetic insulator. The calculations in the local-density approximation (LDA) predict the metallic nonmagnetic state, whereas the calculations in terms of the LDA + U approach (local-density approximation with explicit allowance for on-site Coulomb correlations U) predict the insulating antiferromagnetic state. In terms of the method of generalized transition state, the nonmagnetic insulating state of VO2 in the M 1 phase with a band gap of 0.3 eV has been reproduced for the first time.

PACS numbers

71.15.Mb 71.10.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).CrossRefGoogle Scholar
  2. 2.
    J. B. Goodenough, “The Two Components of the Crystallographic Transition in VO2,” J. Solid State Chem. 3(4), 490–500 (1971).CrossRefGoogle Scholar
  3. 3.
    R. M. Wentzcovitch, W. W. Schulz, and P. B. Allen, “VO2: Peierls or Mott-Hubbard? A View from Band Theory,” Phys. Rev. Lett. 72(21), 3389–3392 (1994).CrossRefGoogle Scholar
  4. 4.
    V. Eyert, “The Metal-Insulator Transitions of VO2: A Band Theoretical Approach,” Ann. Phys. 11(9), 650–704 (2002).CrossRefGoogle Scholar
  5. 5.
    J. P. Pouget, H. Launois, J. P. D’ Haenens, et al., “Electron Localization Induced by Uniaxial Stress in Pure VO2,” Phys. Rev. Lett. 35(13), 873–875 (1975).CrossRefGoogle Scholar
  6. 6.
    A. Zylbersztejn and N. F. Mott, “Metal-Insulator Transition in Vanadium Dioxide,” Phys. Rev. B: Solid State 11(11), 4383–4395 (1975).Google Scholar
  7. 7.
    M. Imada, A. Fujimori, and Y. Tokura, “Metal-Insulator Transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).CrossRefGoogle Scholar
  8. 8.
    M. A. Korotin, N. A. Skorikov, and V. I. Anisimov, “Variation of Orbital Symmetry of the Localized 3d 1 Electron of the V4+ Ion upon the Metal-Insulator Transition in VO2,” Fiz. Met. Metalloved. 94(1), 22–29 (2002) [Phys. Met. Metallogr. 94 (1), 17–23 (2002)].Google Scholar
  9. 9.
    A. Liebsch, H. Ishida, and G. Bihlmayer, “Coulomb Correlations and Orbital Polarization in the Metal-Insulator Transition of VO2,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 085109 (2005).Google Scholar
  10. 10.
    S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, “Dynamical Singlets and Correlation-Assisted Peierls Transition in VO2,” Phys. Rev. Lett. 94, 026404 (2005).Google Scholar
  11. 11.
    O. K. Andersen and T. Saha-Dasgupta, “Muffin-Tin Orbitals of Arbitrary Order,” Phys. Rev. B: Condens. Matter Mater. Phys. 62(24), R16219–R16222 (2000).Google Scholar
  12. 12.
    V. I. Anisimov and A. V. Kozhevnikov, “Transition State and Wannier Functions,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 075125 (2005).Google Scholar
  13. 13.
    J. C. Slater, The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974; Mir, Moscow, 1978).Google Scholar
  14. 14.
    R. O. Jones and O. Gunnarsson, “The Density Functional Formalism, Its Applications and Prospects,” Rev. Mod. Phys. 61(4), 689–708 (1989).CrossRefGoogle Scholar
  15. 15.
    G. H. Wannier, “The Structure of Electronic Excitation Levels in Insulating Crystals,” Phys. Rev. 52(3), 191–197 (1937).CrossRefGoogle Scholar
  16. 16.
    N. Marzari and D. Vanderbilt, “Maximally Localized Wannier Functions for Composite Energy Bands,” Phys. Rev. B: Condens. Matter 56(20), 12 847–12 865 (1997).Google Scholar
  17. 17.
    W. Ku, H. Rosner, W. E. Pickett, and R. T. Scalettar, “Insulating Ferromagnetism in La4Ba2Cu2O10: An ab initio Wannier Function Analysis,” Phys. Rev. Lett. 89 167204 (2002).Google Scholar
  18. 18.
    S. Shin, M. Taniguchi, M. Fujisawa, et al., “Vacuum-Ultraviolet Reflectance and Photoemission Study of the Metal-Insulator Phase Transitions in VO2, V 6O13 and V 2O3,” Phys. Rev. B: Condens. Matter 41(8), 4993–5009 (1990).Google Scholar
  19. 19.
    G. A. Sawatzky and D. Post, “X-ray Photoelectron and Auger Spectroscopy Study of Some Vanadium Oxides,” Phys. Rev. B: Condens. Matter 20(4), 1546–1555 (1979).Google Scholar
  20. 20.
    I. V. Solovyev, Z. V. Pchelkina, and V. I. Anisimov, “Construction of Wannier Functions from Localized Atomic-like Orbitals,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 045110 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. V. Kozhevnikov
    • 1
  • V. I. Anisimov
    • 1
  • M. A. Korotin
    • 1
  1. 1.Institute of Metal Physics, Ural DivisionRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations