Advertisement

Paleontological Journal

, Volume 52, Issue 14, pp 1780–1788 | Cite as

Chorological and Geochemical Factors of Morphogenesis, Using Deviant Forms of Rana arvalis Nilsson, 1842 as an Example

  • V. L. VershininEmail author
  • S. D. Vershinina
Article

Abstract

The frequencies of five abnormal variants of juveniles in populations of the moor frog Rana arvalis in urbanization gradient are analyzed based on 39-year-long monitoring. The data on the limits of occurrences of this deviations in natural conditions are obtained. An increase in the frequency of features under study with the growth of concentration of certain ions, general mineralization, and pH is recorded. Notwithstanding fragmentation of environment and insulation of continuous geographical range, parallelism of the trends in morphological changes in particular isolates is shown. At the same time, the distribution of relatively rare anomalies can be limited by the presence of natural physical barriers.

Keywords:

Amphibia morphological anomalies morphogenesis geochemical factors 

Notes

REFERENCES

  1. 1.
    Andreev, N.I. and Andreeva, S.I., O vzryvnom vidoobrazovanii, protekayushchem na nashikh glazakh v vysykhayushchem Aral’skom more (On the Present-Day Explosive Speciation in the Drying Aral Sea), Omsk: Omsk. Gos. Pedagog. Univ., 2003.Google Scholar
  2. 2.
    Belyaev, D.K., On some aspects of stabilizing and destabilizing selection, in Istoriya i teoriya evolyutsionnogo ucheniya (History and Theory of Evolutionary Doctrine), Leningrad, 1974, vol. 2, pp. 76–84.Google Scholar
  3. 3.
    Belyaev, D.K., Destabilizing selection as a factor of variability in domestication of animals, Priroda, 1979, no. 2, pp. 36–45.Google Scholar
  4. 4.
    Berg, L.S., Nomogenesis or evolution on the basis of laws, Tr. Geogr. Inst., 1922, vol. 1, pp. 1–306.Google Scholar
  5. 5.
    Berg, L.S., Trudy po teorii evolyutsii (Works on the Theory of Evolution), Leningrad: Nauka, 1977.Google Scholar
  6. 6.
    Chambers, D.L., Abiotic factors underlying stress hormone level variation among larval amphibians, Dissertation, Blacksburg, Virginia, 2009.Google Scholar
  7. 7.
    Dubois, A., Sur deux anomalies de la Genouille verte (Rana esculenta), Bull. Soc. Linn. Lyon, 1968, vol. 37, pp. 316–320.Google Scholar
  8. 8.
    Gershenzon, S.M., Microevolution, polymorphism, and dominant mutations, Priroda, 1985, no. 4, pp. 80–89.Google Scholar
  9. 9.
    Grefner, N.M. and Slepyan, E.I., Phenomenon of retardation of larval development in amphibians and dishemia of fresh waters, in Voprosy gerpetologii (Questions of Herpetology), Kiev, 1989, pp. 68–69.Google Scholar
  10. 10.
    Hayes, T.B., Case, P., Chui, S., Chung, D., Haefele, C., Haston, K., Lee, M., Mai, V.P., Marjuoa, Y., Parker, J., and Tsui, M., Pesticide mixtures, endocrine disruption, and amphibian declines: Are we underestimating the impact?, Env. Health Persp., 2006, vol. 114, suppl. 1, pp. 1–70.CrossRefGoogle Scholar
  11. 11.
    Henle, K., Dubois, A., and Vershinin, V., Commented glossary, terminology, and synonymies of anomalies in natural populations of amphibians, Mertensiella, 2017, vol. 25, pp. 9–48.Google Scholar
  12. 12.
    Kovalsky, V.V., Emergence and evolution of the biosphere, Usp. Sovr. Boil., 1963, vol. 55, no. 1, pp. 45–67.Google Scholar
  13. 13.
    Kovalenko, E.E., Variability of the postcranial skeleton of anuran amphibians (Amphibia, Anura), Doctoral Dissertation on Biology, St. Petersburg, 2000.Google Scholar
  14. 14.
    Krassilov, V.A., Nereshennye problemy evolyutsionnogo ucheniya (Unresolved Problem of the Evolutionary Doctrine), Vladivostok: Dal’nevost. Nauchn. Tsentr Akad. Nauk SSSR, 1986.Google Scholar
  15. 15.
    Labbé, A., Une conception nouvelle de l’adaptation: l’allélogénese, Rev. Scientif., 1924, no. 10, pp. 295–301.Google Scholar
  16. 16.
    Makeeva, V.M., Belokon’, M.M., Malyuchenko, O.P., and Leont’eva, O.A., Estimation of the state of the gene pool of natural populations of vertebrates in conditions of fragmentariness of the landscape of Moscow and Moscow Region, using brown frogs as an example, Genetika, 2006, vol. 42, no. 5, pp. 628–642.Google Scholar
  17. 17.
    Merkulova, K.M., Role of thyroid hormones in regulation of ontogeny of the skull of Pleurodeles walti (Salamandridae, Urodela), in Voprosy gerpetologii. Materialy Chetvertogo s’’ezda Gerpetologicheskogo obshchestva im. A.M. Nikol’skogo (Fourth Congress of the A.M. Nikolsky Herpetological Society on the Problems of Herpetology), St. Petersburg: Russ. Koll., 2011, pp. 172–177.Google Scholar
  18. 18.
    Neustroeva, N.S., Morphological variability of the skeleton of representatives of the genus Rana in conditions of anthropogenic destabilization of environment, Candidate’s Dissertation in Biology, Kazan, 2012.Google Scholar
  19. 19.
    Perekhrest, E.V. and Trofimov, A.G., Variability of the cranial skeleton of tadpole of Lissotriton vulgaris Linnaeus, 1758 in a gradient of urbanization, in Ekologiya: fakty, gipotezy, modeli: materialy konferentsii molodykh uchenykh, posvyashchennoi 170-letiyu V. V. Dokuchaeva, Ekaterinburg, 11–15 aprelya 2016 g. IERiZh UrO RAN (Conference of Young Scientists, Devoted to the 170th Anniversary of the Birthday of V.V. Dokuchaev on Ecology: Facts, Hypotheses, Models, April 11–15, 2016, Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg), Yekaterinburg: Goshchitskii, 2016, pp. 72–75.Google Scholar
  20. 20.
    Reeves, M.K., Medley, K.A., Pinkney, A.E., Holyoak, M., Johnson, P.T.J., and Lannoo, M.J., Localized hotspots drive continental geography of abnormal amphibians on US Wildlife Refuges, PLoS ONE, 2013, vol. 8, no. 11, p. e77467. <https: // doi.org/>. doi 10.1371/journal.pone.0077467CrossRefGoogle Scholar
  21. 21.
    Rostand, J., Sur l’anomalie “iris brun” chez Rana esculenta L., CR Acad. Sci., 1953, vol. 237, pp. 762–764.Google Scholar
  22. 22.
    Rostand, J. and Darre, P., Une mutation de Rana esculenta: la grenouille aux yeux noirs, CR Acad. Sci. D, 1970, vol. 217, pp. 1414–1415.Google Scholar
  23. 23.
    Savolainen, V., Anstett, M-C., Lexer, C., Hutton, I., Clarkson, J.J., Norup, M.V., Powell, M.P., Springate, D., Salamin, N., and Baker, W.J., Sympatric speciation in palms on an oceanic island, in Nature Advance Online Publication; Published Online8 February 2006. doi 10.1038/nature04566Google Scholar
  24. 24.
    Shishkin, M.A., Evolution as maintenance of evolutionary stability, in Tezisy konferentsii “Morfogenez v individual’nom i istoricheskom razvitii: ustoichivost’ i variabel’nost’”, 21–23 aprelya 2015 g. (Conference on the Morphogenesis in Individual and Historical Development: Stability and Variability, April 21–23, 2015), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2015, pp. 70–75.Google Scholar
  25. 25.
    Shishkin, M.A., Search for organizational balance as the driving factor of structural changes, in Tezisy konferentsii “Morfogenez v individual’nom i istoricheskom razvitii: ontogenez i formirovanie biologicheskogo raznoobraziya”, 22–24 noyabrya 2017 g. (Conference on the Morphogenesis in Individual and Historical Development: Ontogeny and Formation of Biological Diversity, November 22–24, 2017), Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2017, pp. 73–75.Google Scholar
  26. 26.
    Simirskii, V.N., Dunkan, M.K., Pal’tsev, M.A., and Suchkov, S.V., Integrin β1 as an integrating element in the system of intercellular cooperation providing maintenance of transparency of the crystalline lens, Dokl. Akad. Nauk, 2013, vol. 453, no. 3, pp. 342–345.Google Scholar
  27. 27.
    Skelly, D.K., Bolden, S.R., and Dion, K.B., Intersex frogs concentrated in suburban and urban landscapes, EcoHealth, 2010, vol. 7, no. 3, pp. 374–379.CrossRefGoogle Scholar
  28. 28.
    Snaydon, R.W. and Davies, M.S., Rapid population differentiation in a mosaic environment: IV. Populations of Anthoxanthum odoratum at sharp boundaries, Heredity, 1976, vol. 37, pp. 9–25.CrossRefGoogle Scholar
  29. 29.
    Trofimov, A.G., Interpopulation comparison of skeletal anomalies in Pelophylax ridibundus Pallas, 1771, Vest. St. Peterb. Univ. Ser. 3. Biol., 2016, vol. 3, pp. 149–155.Google Scholar
  30. 30.
    Vershinin, V.L., Tentative estimate of the effect of anthropogenic factors on amphibians of Sverdlovsk, in Problemy ekologii, ratsional’nogo ispol’zovaniya i okhrany prirodnykh resursov na Urale (Problems of Ecology, Rational Use, and Protection of Natural Resources in the Ural Mountains), Sverdlovsk, 1980, pp. 117–118.Google Scholar
  31. 31.
    Vershinin, V.L., Ecological features of populations of amphibians in the urbanized territories, Doctoral Dissertation on Biology, Yekaterinburg, 1997.Google Scholar
  32. 32.
    Vershinin, V.L., Ecological specificity and microevolution in amphibian populations in urbanized areas, in Ecological Specificity of Amphibian Populations. Advances in Amphibian Research in the Former Soviet Union, Moscow–Sophia: Pensoft Publ., 2002, vol. 7, pp. 1–161.Google Scholar
  33. 33.
    Vershinin, V.L., Frequency of depigmentation of the iris in city populations of the moor frog, Ekologiya, 2004, no. 1, pp. 69–73.Google Scholar
  34. 34.
    Vershinin, V.L., Exterior anomalies in populations of the grassy frog (Rana temporaria L.) in the Ural Mountains, in Problemy sokhraneniya biologicheskogo raznoobraziya i ispol’zovaniya biologicheskikh resursov (Problems of Preservation of Biological Diversity and Use of Biological Resources), Minsk: OOO “Medzhik,” IP Varaksin, 2009, part 2, pp. 406–409.Google Scholar
  35. 35.
    Vershinin, V.L., Urbanistic gradient and its long-term dynamics as a basis of effective control of the condition of amphibian populations, in Voprosy gerpetologii. Materialy Chetvertogo s’’ezda Gerpetologicheskogo obshchestva im. A.M. Nikol’skogo (Fourth Congress of the A.M. Nikolsky Herpetological Society on the Problems of Herpetology), St. Petersburg: Russ. Koll., 2011, pp. 56–65.Google Scholar
  36. 36.
    Vershinin, V.L., Osnovy metodologii i metody issledovaniya anomalii i patologii amfibii: Uchebnoe posobie (Foundations of Methodology and Methods of the Study of Anomalies and Pathology of Amphibians: Manual), Yekaterinburg: Ural. Gos. Univ., 2015.Google Scholar
  37. 37.
    Vershinin, V.L., Comparative analysis of the spectra of morphological anomalies of tadpoles of four frog species (Ranidae), in Evolyutsionnaya i funktsional’naya morfologiya pozvonochnykh. Materialy Vserossiiskoi konferentsii i shkoly dlya molodykh uchenykh pamyati Feliksa Yanovicha Dzerzhinskogo (All-Russia Conference and School for Young Scientists in Memory of Feliks Yanovich Dzerzhinsky on the Evolutionary and Functional Morphology of Vertebrates), Popovkin, A.B., Potapov, E.G., Kryukov, N.V., Eds., 2017, pp. 52–55.Google Scholar
  38. 38.
    Vershinin, V.L., Vershinina, S.D., Berzin, D.L., Zmeeva, D.V., and Kinev, A.V., Long-term observation of amphibian populations inhabiting urban and forested areas in Yekaterinburg, Russia, Sci. Data, 2015, vol. 2, art. No. 150018, pp. 1–13. (2015). doi 10.1038/sdata.2015.18Google Scholar
  39. 39.
    von Dassow, M. and Davidson, L.A., Physics and the canalization of morphogenesis, Phys. Biol., 2011, vol. 8, (4 : 045002). doi 10.1088/1478-3975/8/4/045002Google Scholar
  40. 40.
    Voronova, L.D., Golichenkov, V.A., Popov, D.V., Kalistratova, E.N., and Sokolova, Z.A., Response of the pigmentary system of larval amphibians on low concentration of some pesticides, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems of Ecological Monitoring and Modeling of Ecosystems), 1983, vol. 4, pp. 77–90.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of ScienceYekaterinburgRussia
  2. 2.Ural Federal University, Department of Biodiversity and BioecologyYekaterinburgRussia

Personalised recommendations