Advertisement

Paleontological Journal

, Volume 52, Issue 14, pp 1672–1678 | Cite as

Architectonics of Metazoa as the Basis for the Reconstruction of the Ontogeny and Phylogeny of Extinct Taxa

  • S. V. RozhnovEmail author
Article

Abstract

Architectonics is the study of the division of the animal body into modular structures that are to some extent autonomous in their ontogeny and phylogeny. Thereby it allows key points in the ontogeny of many fossil taxa to be identified. Studying the symmetry of the mutual arrangement of the modular structures of the organism and its evolution, together with the analysis of architectonics, promorphology helps to clarify the evolution of ontogeny in real geological time and thereby brings together paleontology and developmental biology. The application of this approach to echinoderms enables the presence of a torsion process in the ontogeny of all Pelmatozoa and Soluta (among Carpozoa), and the absence of this process in Stylophora, to be demonstrated. The analysis of architectonics and promorphology of Paleozoic tetracorals (Rugosa) revealed the correlation of the oral-aboral and dorsal-ventral axes of their larvae with the oral-aboral and directive axes of the polyp developing from them. This shows that the bilateral symmetry of Anthozoa and possibly of all Cnidaria preceded their radial symmetry.

Keywords:

Bilateria symmetry Echinodermata Cnidaria Rugosa promorphology modularity body plan 

Notes

ACKNOWLEDGMENTS

I am deeply grateful to V.V. Isaeva for comments on the manuscript and G.A. Anikeeva for great help in preparing the figures. This work was supported by a grant from the Russian Foundation for Basic Research, project no. 18-04-01046 A and the fundamental research program of the Presidium of the Russian Academy of Sciences “The Evolution of the Organic World. The Role and Influence of Planetary Processes.” This Paper is a contribution to the International Geoscience Program (IGCP) Project 653–The Onset of the Great Ordovician Biodiversification Event.

REFERENCES

  1. 1.
    Arendt, Yu.A., Morskie lilii gipokrinidy (Hypocrinid Sea Lilies), Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 128, Moscow: Nauka, 1970.Google Scholar
  2. 2.
    Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh (Principles of Comparative Anatomy of Invertebrates), vol. 1: Promorfologiya (Promorphology), Moscow: Nauka, 1964.Google Scholar
  3. 3.
    Beklemishev, V.N., Principles of Comparative Anatomy of Invertebrates, vol. 1: Promorphology, Chicago: Univ. of Chicago Press, 1969.Google Scholar
  4. 4.
    Belousov, L.V., Osnovy obshchei embriologii (Fundamentals of General Embryology), Moscow: Mosk. Gos. Univ., Nauka, 2005.Google Scholar
  5. 5.
    Galls, F. and Sinervo, B., Conserved early embryonic stages, Keywords and Concepts in Evolutionary Developmental Biology, Hall, B.K. and Olson W.M., Eds., Cambridge, Mass.; London: Harvard Univ. Press, 2003, pp. 43–52.Google Scholar
  6. 6.
    Hall, B.K. and Olson, W.M., Introduction: evolutionary developmental mechanisms, Keywords and Concepts in Evolutionary Developmental Biology, Hall, B.K. and Olson W.M., Eds., Cambridge, Mass.; London: Harvard Univ. Press, 2003, pp. XIV–XVI.Google Scholar
  7. 7.
    Isaeva, V.V., Ozernyuk, N.D., and Rozhnov, S.V., Evidence of evolutionary changes in ontogeny: Paleontological, comparative morphological, and molecular aspects, Izv. Ross. Akad. Nauk, Ser. Biol., 2013, no. 3, pp. 273–283.Google Scholar
  8. 8.
    Kraus, Y., Aman, A., Technau, U., and Genikhovich, G., Pre-bilaterian origin of the blastoporal axial organizer, Nat. Commn., 2016, vol. 7, no. 11694. Cited 2016. doi 10.1038/ncomms11694Google Scholar
  9. 9.
    Leonova, T.B., Evolution of Palaeozoic ammonoid sutures, Invert. Zool., 2017, vol. 14, no. 1, pp. 27–31.CrossRefGoogle Scholar
  10. 10.
    Parkhaev, P.Yu., Origin and the early evolution of the phylum Mollusca, Paleontol. J., 2017, vol. 51, no. 6, pp. 663–686. Cited 2017. doi 10.1134/S003103011706003XGoogle Scholar
  11. 11.
    Rozhnov, S.V., Morskie lilii nadsemeistva Pisocrinacea (Crinoids of the Superfamily Pisocrinacea), Arendt, Yu.A., Ed., Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 192, Moscow: Nauka, 1981.Google Scholar
  12. 12.
    Rozhnov, S.V., Changes in the Early Paleozoic geography as a possible factor of echinoderm higher taxa formation: Delayed larval development to cross the Iapetus Ocean, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 245, nos. 1–2, pp. 306–316.CrossRefGoogle Scholar
  13. 13.
    Rozhnov, S.V., Combinatorial model for the formation of body plans in higher metazoan taxa: paleontological insight, Paleontol. J., 2010, vol. 44, no. 12, pp. 1500–1508.CrossRefGoogle Scholar
  14. 14.
    Rozhnov, S.V., The anteroposterior axis in echinoderms and displacement of the mouth in their phylogeny and ontogeny, Biol. Bull., 2012, vol. 39, no. 2, pp. 162–171.CrossRefGoogle Scholar
  15. 15.
    Rozhnov, S.V., Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality, Nat. Sci., 2014a, vol. 6, no. 4, pp. 171–183.Google Scholar
  16. 16.
    Rozhnov, S.V., Bilateral symmetry in ontogeny and regeneration of solitary Rugosa (Cnidaria; Paleozoic), Paleontol. J., 2014b, vol. 48, no. 11, pp. 1183–1193. Cited 2014. doi 10.1134/S0031030114110094Google Scholar
  17. 17.
    Rozhnov, S.V., Modularity and heterochronies in the evolution of Metazoa: paleontological aspect, Paleontol. J., 2015, vol. 49, no. 14, pp. 1–15.CrossRefGoogle Scholar
  18. 18.
    Rozhnov, S.V., Arms versus brachioles: Morphogenetic basis of similarity and differences in food-gathering appendages of pelmatozoan echinoderms, Paleontol. J., 2016, vol. 50, no. 14, pp. 1598–1609. Cited 2016. doi 10.1134/S0031030116140069Google Scholar
  19. 19.
    Rozhnov, S.V., Ordovician paracrinoids from the Baltic: Key problems of comparative morphology of pelmatozoan echinoderms, Paleontol. J., 2017a, vol. 51, no. 6, pp. 643–662. Cited 2017. doi 10.1134/S0031030117060065Google Scholar
  20. 20.
    Rozhnov, S.V., The origin and homology of the jointed appendages of carpoid and pelmatozoan echinoderms, Invert. Zool., 2017b, vol. 14, no. 2, pp. 174–181. Cited 2017. doi 10.15298/invertzool.14.2.12Google Scholar
  21. 21.
    Rozhnov S.V. Solutans: between torsion and pentaradiality, 16th International Echinoderm Conference, Nagoya, Japan: Program & Abstracts, 2018, p. 105.Google Scholar
  22. 22.
    Rozhnov, S.V. and Mirantsev, G.V., Structural aberrations in the cup in cladid crinoids from the carboniferous of the Moscow Region, Paleontol. J., 2014, vol. 48, no. 12, pp. 1243–1257. Cited 2014. doi 10.1134/S0031030114120090Google Scholar
  23. 23.
    Rozhnov, S.V. and Parsley, R.L., A new cornute (Homalozoa: Echinodermata) from the uppermost Middle Cambrian (stage 3, Furongian) from Northern Iran: its systematics and functional morphology, Paleontol. J., 2017, vol. 51, no. 5, pp. 500–550. Cited 2017. doi 10.1134/S0031030117050100Google Scholar
  24. 24.
    Ruzhencev, V.E., Printsipy sistematiki, sistema i filogeniya paleozoiskikh ammonoidei (Principles of Systematics, the System and Phylogeny of Paleozoic Ammonoids). Orlov, Yu.A., Ed., Tr. Paleontol. Inst. Akad. Nauk SSSR, vol. 83, Moscow: Nauka, 1960.Google Scholar
  25. 25.
    Sander, K., The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis, Development and Evolution, Goodwin, B.C. Holderand, N., and Wylie, C.G., Eds., Cambridge: University Press, 1983, pp. I37–159.Google Scholar
  26. 26.
    Slack, J.M.W., Phylotype and zootype, Keywords and Concepts in Evolutionary Developmental Biology, Hall, B.K. and Olson, W.M., Eds., Cambridge, Mass., London: Harvard Univ. Press, 2003, pp. 309–318.Google Scholar
  27. 27.
    Valentine, J.W., On the Origin of Phyla, Chicago: Univ. Chicago Press, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations