Advertisement

Paleontological Journal

, Volume 52, Issue 13, pp 1647–1650 | Cite as

Diatoms in the Orgueil Meteorite

  • R. B. Hoover
  • A. Yu. Rozanov
  • E. A. Krasavin
  • A. K. RyuminEmail author
  • M. I. KapralovEmail author
Article

Abstract

We report the discovery of frustules of pennate diatoms embedded in a freshly fractured interior surface of the Orgueil CI1 carbonaceous meteorite. Images and element composition by Energy Dispersive X-ray Spectroscopy were obtained with the TESCAN VEGA 3 Scanning Electron Microscope (SEM) in the Astrobiology Sector of the Laboratory of Radiation Biology of the Joint Institute for Nuclear Research in Dubna, Russia. The distribution of chemical elements as shown by Energy Dispersive X-Ray Spectroscopy (EDS) and 2-D element maps show no detectable nitrogen. Hence the diatoms are interpreted as indigenous to the Orgueil meteorite and therefore have direct implications to the existence of extraterrestrial life; and the hypothesis of Panspermia.

Keywords:

diatoms Orgueil meteorite 

Notes

ACKNOWLEDGMENTS

We are grateful to the Joint Institute for Nuclear Research for support for this research. We thank Dr. Claude Perron and Dr. Martine-Rossignol Strick (Paris) and Prof. Paul Sipiera (Chicago) for providing samples of the Orgueil meteorite used in this study.

The work was performed according to the Program of the Presidium of the Russian Academy of Sciences no. 17 “The evolution of the organic world: The role and influence of planetary processes” (Subprogram 1 “Development of life and biospheric processes”), with the support of the Russian Foundation for Basic Research, project no. 17-04-00324.

REFERENCES

  1. 1.
    Berzelius, J.J., Über Meteorsteine, Meteorstein von Alais, XVAnn. Phys. Chem., 1834, vol. 33, pp. 113–123.Google Scholar
  2. 2.
    Boström, K. and Frederickson, K., Surface conditions of the Orgueil meteorite parent body as indicated by mineral associations, Smithsonian Misc. Coll., 1966, vol. 151, pp. 1–39.Google Scholar
  3. 3.
    Campins, H. and Swindle, T.D., Expected characteristics of cometary meteorites, Met. Planet. Sci., 1998, vol. 33, pp. 1201–1211. doi 10.1111/j.1945-5100.1998.tb01305.xCrossRefGoogle Scholar
  4. 4.
    Cloëz, S., Note sur la composition chimique de la pierre météorique d’Orgueil, Compt. Rend. Acad. Sci., 1864, vol. 59, pp. 37–40.Google Scholar
  5. 5.
    Ehrenfreund, P., Glavin, D.P., Botta, O., Cooper, G., and Bada, J., Extraterrestrial amino acids in Orgueil and Ivuna: Tracing the parent body of CI type carbonaceous chondrites, Proc. Natl. Acad. Acad. Sci., 2001, vol. 98, pp. 2138–2141. doi 10.1073/pnas.051502898CrossRefGoogle Scholar
  6. 6.
    Endress, M. and Bischoff, A., Mineralogy, degree of brecciation, and aqueous alteration of the CI chondrites Orgueil, Ivuna, and Alais, Meteoritics, 1993, vol. 28, pp. 345–346.Google Scholar
  7. 7.
    Endress, M. and Bischoff, A., Carbonates in CI chondrites: Clues to parent body evolution, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 489–507.CrossRefGoogle Scholar
  8. 8.
    Gounelle, M., Spurný, P., and Bland, P.A., The orbit and atmospheric trajectory of the Orgueil meteorite from historical records, Meteorit. Planet. Sci., 2006, vol. 41, pp. 135–150. doi 10.1111/j.1945-5100.2006.tb00198.xCrossRefGoogle Scholar
  9. 9.
    Hoover, R.B., Meteorites, microfossils and exobiology, in Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, Hoover, R.B., Ed., Proc. SPIE, vol. 3111, 1997, pp. 115–136.Google Scholar
  10. 10.
    Hoover, R.B., Mineralized remains of morphotypes of filamentous cyanobacteria in carbonaceous meteorites, Astrobiology and Planetary Missions, Hoover, R.B., Levin, G.V., Rozanov, A.Y., and Randall Gladstone, G., Eds., Proc. SPIE, vol. 5906, 2005, pp. 59060J1–59060J17. doi 10.1117/12.62441910.1117/12.624419Google Scholar
  11. 11.
    Hoover, R.B., Comets, carbonaceous meteorites and the origin of the biosphere, Biogeosci. Discuss., 2006, no. 3, pp. 23–70. doi 10.5194/bgd-3-23-2006Google Scholar
  12. 12.
    Hoover, R.B., Fossils of cyanobacteria in CI1 carbonaceous meteorites: implications to life on comets, Europa and Enceladus, J. Cosmol., 2011, vol. 16, pp. 7070–7111.Google Scholar
  13. 13.
    Hoover, R.B. and Rozanov, A.Yu., Microfossils, biominerals, and chemical biomarkers in meteorites, Instruments Methods and Missions for Astrobiology VI, Hoover, R.B., Rozanov, A.Yu., and Lipps, J.H., Eds., Proc. SPIE, vol. 4939, 2003, pp. 10–27. doi 10.1117/12.50186810.1117/ 12.501868Google Scholar
  14. 14.
    Hoover, R.B., Hoyle, F., Wickramasinghe, N.C., Hoover, M.J., and Al-Mufti, S., Diatoms on Earth, comets, Europa, and in interstellar space, Earth, Moon, Planets, 1986, vol. 35, pp. 19–45. doi 10.1142/9789814675260_0043CrossRefGoogle Scholar
  15. 15.
    Hoover, R.B., Jerman, G., Rozanov, A.Yu., and Sipiera, P.P., Indigenous microfossils in carbonaceous meteorites, Instruments Methods and Missions for Astrobiology VIII, Hoover, R.B., Levin, G.V., and Rozanov, A.Y., Eds., Proc. SPIE, vol. 5555, 2004, pp. 1–17. doi 10.1117/12.56649110.1117/12.566491Google Scholar
  16. 16.
    Hoyle, F. and Wickramasinghe, N.C., in Comets and the Origin of Life, Ponnamperuma, C., Ed., Dordrecht: D. Reidel, 1981, p. 227.Google Scholar
  17. 17.
    Leymeri, M., Written communication with Mr. Daubrée, Compt. Rend. Acad. Sci., 1864, vol. 58, pp. 982–989.Google Scholar
  18. 18.
    Ligowski, R., Jordan, R.W., and Assmy, P., Morphological adaptation of a planktonic diatom to growth in Antarctic sea ice, Mar. Biol., 2012, vol. 159, no. 4, pp. 817–827. doi 10.1007/s00227-011-1857-6CrossRefGoogle Scholar
  19. 19.
    Lodders, K. and Osborne, R., Perspectives on the comet-asteroid-meteorite link, Space Sci. Rev., 1999, vol. 90, nos. 1–2, pp. 289–297.CrossRefGoogle Scholar
  20. 20.
    Nagy, B., Carbonaceous Meteorites, New York: Elsevier Sci. Publ., 1975.Google Scholar
  21. 21.
    Pisani, F., Étude chimique et analyse de l’aérolithe d’Orgueil, Compt. Rend. Acad. Sci., 1864, vol. 59, pp. 132–135.Google Scholar
  22. 22.
    Podolak, M. and Prialnik, D., Conditions for the production of liquid water in comet nuclei, A New Era in Bioastronomy, Lemarchand, G. and Meech, K., Eds., ASP Conference Series, vol. 213, 2000, pp. 231–234. doi 10.1007/3-540-33088-7_10Google Scholar
  23. 23.
    Rozanov, A.Yu., Pseudomorphic microbial structures in meteorites, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Rozanov, A.Yu., Lopatin, A.V., and Snytnikov, V.N., Eds. Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009a, pp. 158–168.Google Scholar
  24. 24.
    Rozanov, A.Yu., Life Conditions of the Early Earth after 4.0 GA, in Problemy proiskhozhdeniya zhizni (Problems of the Origin of Life), Rozanov, A.Yu., Lopatin, A.V., and Snytnikov, V.N., Eds. Moscow: Paleontol. Inst. Ross. Akad. Nauk, 2009b, pp. 185–202.Google Scholar
  25. 25.
    Rozanov, A.Yu., Zhegallo, A.E., Ushatinskaya, G.T., Shuvalova, Y.V., and Hoover, R.B., Bacterial paleontology for astrobiology, Instruments, Methods, and Missions for Astrobiology IV, Hoover, R.B., Levin, G.V., Paepe, R.R., and Rozanov, A.Y., Eds., Proc. SPIE, vol. 4495, 2002, pp. 283–294. doi 10.1117/12.45476510.1117/12.454765Google Scholar
  26. 26.
    Thénard L.J., Analyse d’un aérolithe tombé de l’arrondissement d’Alais, le 15 mars, Ann. Chim. Phys., 1806, vol. 59, pp. 103–110.Google Scholar
  27. 27.
    Tomeoka, K. and Buseck, P.R., Matrix mineralogy of the Orgueil C1 carbonaceous chondrite, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 1627–1640.CrossRefGoogle Scholar
  28. 28.
    Zhmur S.I., Rozanov, A.Yu., and Gorlenko, V.M., Lithified remnants of microorganisms in carbonaceous chondrites, Geochem. Int., 1997, vol. 35, pp. 58–60.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Astrobiology Laboratory, Athens State UniversityAthensUSA
  2. 2.Buckingham Centre for Astrobiology, University of BuckinghamBuckinghamUK
  3. 3.Borissiak Paleontological Institute, Russian Academy of SciencesMoscowRussia
  4. 4.Astrobiology Sector, Laboratory of Radiation Biology, JINRDubnaRussia
  5. 5.Dubna State UniversityDubnaRussia

Personalised recommendations